Что изменится если амплитуда колебаний окажется большой

Что изменится если амплитуда колебаний окажется большой

Ответ

Ответ: допущение о малости амплитуд колебаний маятника приводит к линейным зависимостям смещения груза, а также упрощает модель исследования в связи с отсутствием внутренних потерь энергии в среде.

При большой амплитуде колебаний такие допущения будут неверными, это усложнит вывод необходимых зависимостей.

Колебательное движение — периодическое или почти периодическое движение тела, координата, скорость и ускорение которого через равные промежутки времени принимают примерно одинаковые значения.

Механические колебания возникают тогда, когда при выводе тела из положения равновесия появляется сила, стремящаяся вернуть тело обратно.

Смещение х — отклонение тела от положения равновесия.

Амплитуда А — модуль максимального смещения тела.

Период колебания Т — время одного колебания:

Частота колебания

— число колебаний, совершаемых телом за единицу времени: При колебаниях скорость и ускорение периодически изменяются. В положении равновесия скорость максимальна, ускорение равно нулю. В точках максимального смещения ускорение достигает максимума, скорость обращается в нуль.

ГРАФИК ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Гармоническими называются колебания, происходящие по закону синуса или косинуса:

где x(t) — смещение системы в момент t, A — амплитуда, ω — циклическая частота колебаний.

Если по вертикальной оси откладывать отклонение тела от положения равновесия, а по горизонтальной — время, то получится график колебания х = x(t) — зависимость смещения тела от времени. При свободных гармонических колебаниях — это синусоида или косинусоида. На рисунке представлены графики зависимости смещения х, проекций скорости V х и ускорения а х от времени.

Как видно из графиков, при максимальном смещении х скорость V колеблющегося тела равна нулю, ускорение а, а значит и действующая на тело сила, максимальны и направлены противоположно смещению. В положении равновесия смещение и ускорение обращаются в нуль, скорость максимальна. Проекция ускорения всегда имеет знак, противоположный смещению.

ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Полная механическая энергия колеблющегося тела равна сумме его кинетической и потенциальной энергий и при отсутствии трения остается постоянной:

В момент, когда смещение достигает максимума х = А, скорость, а вместе с ней и кинетическая энергия, обращаются в нуль.

При этом полная энергия равна потенциальной энергии:

Полная механическая энергия колеблющегося тела пропорциональна квадрату амплитуды его колебаний.

Когда система проходит положение равновесия, смещение и потенциальная энергия равны нулю: х = 0, Е п = 0. Поэтому полная энергия равна кинетической:

Полная механическая энергия колеблющегося тела пропорциональна квадрату его скорости в положении равновесия . Следовательно:

1. Математический маятник — это материальная точка, подвешенная на невесомой нерастяжимой нити.

В положении равновесия сила тяжести компенсируется силой натяжения нити. Если маятник отклонить и отпустить, то силы и перестанут компенсировать друг друга, и возникнет результирующая сила , направленная к положению равновесия. Второй закон Ньютона:

При малых колебаниях, когда смещение х много меньше l, материальная точка будет двигаться практически вдоль горизонтальной оси х. Тогда из треугольника МАВ получаем:

Так как sin a = х/l , то проекция результирующей силы R на ось х равна

Знак "минус" показывает, что сила R всегда направлена против смещения х.

2. Итак, при колебаниях математического маятника, так же как и при колебаниях пружинного маятника, возвращающая сила пропорциональна смещению и направлена в противоположную сторону.

Сравним выражения для возвращающей силы математического и пружинного маятников:

Видно, что mg/l является аналогом k. Заменяя, k на mg/l в формуле для периода пружинного маятника

Читайте также:  Преимущества самсунга перед айфоном

получаем формулу для периода математического маятника:

Период малых колебаний математического маятника не зависит от амплитуды.

Математический маятник используют для измерения времени, определения ускорения свободного падения в данном месте земной поверхности.

Свободные колебания математического маятника при малых углах отклонения являются гармоническими. Они происходят благодаря равнодействующей силы тяжести и силы натяжения нити, а также инерции груза. Равнодействующая этих сил является возвращающей силой.

Пример. Определите ускорение свободного падения на планете, где маятник длиной 6,25 м имеет период свободных колебаний 3,14 с.

Период колебаний математического маятника зависит от длины нити и ускорения свободного падения:

Возведя обе части равенства в квадрат, получаем:

Ответ: ускорение свободного падения равно 25 м/с 2 .

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Читайте также:  Тег для создания ненумерованного списка

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .

Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

Теперь дифференцируем полученное равенство (4) :

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

Если 0′ alt=’x>0′ /> (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то 0′ alt=’F_>0′ /> . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

Читайте также:  Перенос windows 10 на ssd на ноутбуке

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. 0′ alt=’x>0′ /> ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это — уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

Отсюда период колебаний математического маятника:

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .

Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

Ссылка на основную публикацию
Что делать если завис телефон андроид
Что делать, если завис Андроид и не реагирует не на что? В этой статье мы посмотрим четыре простых способа как...
Фум лента в стоматологии фото
Автор: G. Freedman Перевод: Александр Зыбайло Автор: G. Freedman Перевод: Александр Зыбайло Ограничение количества цемента для фиксации и использование определенной...
Функции жесткого диска в компьютере
Жесткий диск, он же винчестер, является основным местом, где хранится вся информация. В отличие от оперативной памяти, он энергетически независим,...
Что дают за рейтинговые бои
В кои-то веки разработчики решили прислушаться к мнению игроков и ввести в Варфейс рейтинговые матчи. Теперь каждый игрок, достигший 26...
Adblock detector