Что зависит от жесткого диска

Что зависит от жесткого диска

Каждый пользователь обращает внимание на скорость чтения жесткого диска при покупке, поскольку от этого зависит эффективность его работы. На данный параметр влияет сразу несколько факторов, о которых мы бы и хотели поговорить в рамках этой статьи. Кроме этого, предлагаем ознакомиться с нормами этого показателя и расскажем о том, как самостоятельно его измерять.

От чего зависит скорость чтения

Работа магнитного накопителя осуществляется с помощью специальных механизмов, функционирующих внутри корпуса. Они являются движущимися, поэтому от скорости их вращения напрямую зависит чтение и запись файлов. Сейчас золотым стандартом считается быстрота вращения шпинделя 7200 оборотов в минуту.

Модели с большим значением используются в серверных установках и тут нужно учитывать, что тепловыделение и потребление электроэнергии при таком движении тоже больше. При чтении головка HDD должна переместиться на определенный участок дорожки, из-за этого возникает задержка, которая тоже влияет на быстроту считывания информации. Она измеряется в миллисекундах и оптимальным результатом для домашнего использования считается задержка в 7-14 мс.

Объем кэша тоже оказывает влияние на рассматриваемый параметр. Дело в том, что при первом обращении к данным они помещаются во временное хранилище — буфер. Чем больше объем этого хранилища, тем больше информации там может уместиться, соответственно, последующее ее считывание будет производиться в несколько раз быстрее. В популярных моделях накопителей, установленных в компьютеры обычных юзеров, установлен буфер размером 8-128 МБ, чего вполне хватает для ежедневного использования.

Поддерживаемые жестким диском алгоритмы тоже оказывают немалое влияние на быстродействие устройства. Взять за пример можно хотя бы NCQ (Native Command Queuing) — аппаратную установку очередности команд. Такая технология позволяет принимать несколько запросов одновременно и перестраивать их в максимально эффективном порядке. Из-за этого чтение будет производиться в несколько раз быстрее. Более устаревшей считается технология TCQ, обладающая некоторым ограничением на количество одновременно посылаемых команд. SATA NCQ — новейший стандарт, позволяющий работать единовременно с 32 командами.

Зависит скорость чтения и от объема диска, что напрямую связанно с расположением дорожек на накопителе. Чем больше информации, тем медленнее происходит перемещение к необходимому сектору, а файлы с большей вероятностью будут записаны в разные кластеры, что тоже отразится на считывании.

Каждая файловая система работает по своему алгоритму чтения и записи, и это приводит к тому, что быстродействие одинаковых моделей HDD, но на разных ФС, будет различной. Возьмем для сравнения NTFS и FAT32 — наиболее используемые файловые системы на операционной системе Windows. NTFS более подвержена к фрагментации конкретно системных областей, поэтому головки диска совершают больше движений, нежели при установленной FAT32.

Сейчас все чаще диски работают с режимом Bus Mastering, который позволяет обмениваться данными без участия процессора. Система NTFS при этом использует еще запоздалое кэширование, записывая большую часть данных в буфер позднее FAT32, а из-за этого страдает скорость чтения. Из-за этого можно сделать, что файловые системы FAT в целом быстрее NTFS. Не будем сравнивать все доступные на сегодняшний день ФС, мы лишь показали на примере, что разница в производительности присутствует.

Напоследок хотелось бы отметить и версии интерфейса подключения SATA. SATA первого поколения имеет пропускную способность в 1,5 ГБ/c, а SATA 2 — 3 ГБ/c, что при использовании современных накопителей на старых материнских платах тоже может сказаться на быстродействии и вызвать определенные ограничения.

Нормы скорости чтения

Теперь, когда мы разобрались с параметрами, влияющими на скорость чтения, необходимо выяснить оптимальные показатели. Мы не будем брать за пример конкретные модели, с разными скоростями вращения шпинделя и другими характеристиками, а лишь уточним, какие должны быть показатели для комфортной работы за компьютером.

В учет брать следует еще и то, что объем всех файлов разный, поэтому и быстродействие будет отличаться. Рассмотрим два самых популярных варианта. Файлы, объемом более 500 МБ должны читаться со скоростью от 150 МБ/c, тогда она считается более чем приемлемой. Системные же файлы обычно не занимают более 8 КБ места на дисковом пространстве, поэтому приемлемый показатель чтения для них будет 1 МБ/с.

Проверка скорости чтения жесткого диска

Выше вы уже узнали о том, от чего зависит скорость чтения жесткого диска и какое значение является нормальным. Далее возникает вопрос, как самостоятельно измерять этот показатель на имеющемся накопителе. В этом помогут два простых способа — можно воспользоваться классическим приложением Windows «PowerShell» либо загрузить специальное программное обеспечение. После проведения тестов вы сразу же получите результат. Подробные руководства и объяснения по этой теме читайте в отдельном нашем материале по следующей ссылке.

Теперь вы ознакомлены с информацией касаемо скорости чтения внутренних жестких дисков. Стоит заметить, что при подключении через USB-разъем в качестве внешнего накопителя скорость может быть другой, если только вы не используете порт версии 3.1, поэтому учтите это при приобретении накопителя.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Дисковое устройство

С самого начала эволюции компьютеров требовалось где-то хранить данные вне оперативной памяти, которая при выключении питания обнулялась. Кроме того, хранить данные требовалось не только между включениями компьютера, но и во время его работы — ведь оперативная память не безгранична, поэтому нужно где-то размещать промежуточные данные или окончательный результат их обработки.

В течение продолжительного периода для долговременного хранения данных использовали жёсткие магнитные диски (HDD, Hard Disk Drive) и магнитные ленты (МТ, Magnetic Tape). Первые — обеспечивают произвольный доступ к данным и, поэтому, высокую скорость операций с ними. Вторые — записывают и считывают данные последовательно, поэтому их скорость доступа к данным невысока, зато себестоимость хранения данных на лентах чрезвычайно низкая.

В последнее десятилетие бурно развиваются носители нового типа — на базе полупроводниковой энергонезависимой памяти, в быту: «флэш-памяти». Для совместимости с прежними системами её стали выпускать в корпусах и с разъёмами, совместимыми с корпусами и разъёмами жёстких дисков. В результате, их стали тоже называть дисками, но твёрдотельными (SSD, Solid-State Drive), хотя, конечно, никаких подвижных частей в них нет. Их правильное русское название — твёрдотельный накопитель.

Далее мы рассмотрим основные характеристики устройств, обеспечивающих быстрый и произвольный доступ к хранимым данным — жёстких магнитных дисков и твёрдотельных накопителей.

Что требуется?

Чего мы ожидаем от дисковой подсистемы компьютера? — Очевидно, чтобы запись и чтение данных выполнялись быстро!

От чего зависит скорость этих операций?

Дисковая операция включает в себя несколько фаз: 1) выдачу команды на операцию (чтения или записи); 2) обработку данных контроллером дискового устройства; 3) передачу данных через интерфейс дисковой подсистемы (при записи данных фазы 2 и 3 меняются местами).

Таким образом, общее время дисковой операции складывается из продолжительности каждого из этих последовательных действий.

Как устроены диски?

Физическое устройство дисков разного типа имеет прямое отношение к их базовым характеристикам, поэтому кратко осветим этот аспект.

Жесткие диски (HDD, Hard Disk Drive). Данные на носители этого типа записываются путём намагничивания микроскопических областей ферромагнитного материала, нанесённого тонким слоем на поверхность алюминиевого диска.

Намагничивание производится специальной головкой, расположенной на специальном поворотном коромысле. Диск вращается, головка перемещается в радиальном, относительно диска, направлении.

Когда требуется записать или прочитать данные, головка перемещается на соответствующую магнитную дорожку и ожидает поворота диска до нужного участка дорожки, чтобы начать непосредственную запись или чтение данных.

На эти действия уходит, хоть и небольшое, но вполне измеримое время. Время позиционирования на нужную дорожку называется временем поиска (Seek Time), а время поворота диска — временем ожидания, или задержкой (Rotational Latency).

Иногда все временны́е характеристики суммируют, объединяют в одну, которую называют просто задержкой (Latency).

Твёрдотельные накопители (SSD, Solid-State Drive). В них нет механических частей. Данные записываются в энергонезависимые ячейки памяти. Энергонезависимость означает то, что состояние ячеек памяти при отключении электропитания сохраняется. Быстродействие носителей этого типа намного выше быстродействия механических дисков. Электроны и дырки перемещаются в полупроводнике быстрее магнитной головки над поверхностью жёсткого диска.

Читайте также:  Перенос водопроводных труб в квартире

Из-за особенностей устройства полупроводниковой памяти операции записи и чтения могут занимать в ней разное время: запись проходит немного медленнее. Но в отличии от механических дисков в твёрдотельных накопителях нет потери времени на позиционирование магнитной головки и ожидание поворота диска.

Общее

Блоки данных

Данные на долговременных носителях обрабатываются блоками (порциями). То есть если на носитель требуется записать лишь один байт или даже один бит, под новый файл будет сразу выделена некоторая фиксированная порция дискового пространства. Соответственно, продолжительность операции с целым блоком или с одним из байтов этого блока будет одинаковой.

Очевидный вывод: если вы измените 100 байтов из разных блоков, вы потратите на эти операции примерно в 100 раз больше времени, чем в случае, когда эти 100 байтов находятся в одном блоке.

На минимальные порции данные делятся на двух уровнях: на уровне физического носителя минимальная порция данных — сектор в 512 байтов (в случае HDD) или страница в 4 килобайта (в случае SSD). На уровне файловой системы минимальной порцией данных является кластер, который объединяет в себе несколько соседних секторов или страниц.

Сектора и страницы требуются для оптимизации работы аппаратной части носителя данных. Кластеры нужны для оптимизации работы файловой системы. Без секторов и кластеров обработка отдельных байтов была бы крайне неэффективной, а их адреса имели бы гигантскую длину.

Выбор правильного размера кластера — задача не совсем простая.

Если установить размер кластера очень большим, операции с данными ускорятся, но в результате, на диске будет образовываться много пустых, не занятых полезными данными, участков. Впрочем, бесполезные зоны большего или меньшего размера всегда образуются в «хвостах» кластеров и на HDD, и на SSD, так как длина файлов всегда меньше суммарного размера выделенных для него кластеров. — Это неизбежное следствие выравнивания выделяемого дискового пространства по кратности.

Если кластер сделать слишком маленьким, в файловой системе придётся хранить больше данных о месте размещения файлов.

Таким образом, в файловой системе минимальная порция данных — один кластер. Обычно чем больше размер диска, тем больше секторов включают в один кластер.

Файловая система

Операционная система и приложения работают не с абстрактными блоками данных, а с прикладными файлами. Для того, чтобы получить тот или иной файл, сначала нужно узнать, в каких блоках он размещён. Сведения об этом хранятся среди данных файловой системы, которые сами хранятся на диске, то есть для получения данных из файла, сначала нужно выполнить ряд вспомогательных (накладных!) дисковых операций.

Отсюда первый вывод: на скорость дисковых операций существенно влияют особенности файловой системы (FAT, ext, NTFS, ReFS, …).

Второй, тоже достаточно очевидный, вывод: большие файлы удельно обрабатываются быстрее, чем множество небольших файлов такого же суммарного объёма. Ведь во втором случае потребуется большее число обращений к файловой системе.

Фрагментированность файлов

Файлы на диске редко хранятся в виде непрерывной последовательности блоков. Практически одновременно на нём обрабатываться разные файлы, кластеры которых могут быть записаны вперемешку. В результате, содержимое конкретного файла может оказаться в цепочке фрагментов, размещённых в разных частях диска. При обращении к этому файлу потребуется дополнительное время на сборку фрагментов. Чем больше фрагментов, тем больше времени.

Физическая фрагментированность файлов не является большой проблемой в случае твёрдотельных накопителей (SSD), но на жёстких механических дисках (HDD) замедление обработки данных из-за неё может быть очень заметным.

Контроллеры

Посредником между непосредственным физическим носителем данных и операционной системой является контроллер. Ведь операционной системе совсем неважно, в каком конкретном месте диска хранятся её данные, ей нужно просто иметь возможность записать, изменить или получить их.

На прикладном уровне речь идёт о файлах, на уровне дисковых операций — о блоках данных (кластерах, секторах, страницах). Контроллеры выполняют действия трёх типов:

  1. принимают данные от операционной системы или передают их ей;
  2. обрабатывают передаваемые данные;
  3. записывают данные непосредственно на физический носитель или читают их с него.

Все эти действия требуют определённого времени, поэтому их продолжительность и эффективность сказывается на общей производительности дисковой подсистемы.

Интерфейсы

Одна из причин бурного развития компьютерной техники — унификация её элементов и, соответственно, их взаимозаменяемость, которая, среди прочего, включает в себя стандартные соединители. Но под интерфейсом устройства понимается не только электрический разъём, но и протокол обмена данными.

Очень долго использовались жёсткие диски с интерфейсами IDE, который обеспечивал скорость передачи данных до 133 МБ/с, и SCSI со скоростью до 640 МБ/с.

Интерфейс SATA поднял максимальную скорость до 750 МБ/с. Уже появляются модели с пропускной способностью контроллера до 1 500 МБ/с.

Интерфейс SAS имеет такую же максимальную скорость, но у сопоставимых моделей дисков он обеспечивает лучшие скоростные показатели. Кроме того, у него выше надёжность. Его протокол передачи данных является развитием протокола SCSI.

Следует различать скорость чтения-записи данных в отношении физического носителя и максимальную скорость передачи данных через интерфейс контроллера. В настоящее время скорость физических операций на дисках HDD достигает 200–300 МБ/с, а на дисках SSD — 600–700 МБ/с.

Интерфейс имеет более высокую пропускную способность, что позволяет контроллеру кэшировать и буферизировать обрабатываемые данные.

Здесь перечислены основные на сегодняшний день интерфейсы. Существуют контроллеры и с другими аппаратными и программными интерфейсами, но они имеют меньшее распространение, чем указанные.

Интеллектуальность

На результирующей производительности дисковых устройств сказывается не только скорость передачи данных, но и то, как обрабатываются запросы на дисковые операции.

Какие методы оптимизации применяются?

Очередь. Напомним, что у механических дисков существенное время расходуется на перемещение считывающей головки до нужно кластера.
Если контроллер умеет и ему разрешено работать с очередью запросов, он может оптимизировать порядок выполнения запрошенных дисковых операций и тем самым, в целом, ускорить их исполнение. Например, контроллер может изменить порядок записи или чтения данных для разных запросов из очереди с целью минимизации перемещения магнитной головки.

Буферизация. Очередь — это способ буферизации запросов. Аналогично можно поступать и с данными. Например, если они подготовлены, и их нужно передать дальше, совсем не обязательно ожидать окончания передачи — можно начать обработку следующей порции.

Кэширование. Нередко возникают ситуации, при которых в разных дисковых операциях запрашиваются одни и те же блоки данных. Если в состав контроллера включить дополнительную быструю память и хранить в ней часто запрашиваемые блоки данных, появится возможность реже обращаться к более медленному физическому носителю. Это сократит время выполнения операции.

Массивы дисков

Особым способом ускорения дисковой подсистемы является совместное использование нескольких дисков (RAID-массивов). В этом случае разные блоки одного и того же файла одновременно записываются на разные диски, что тоже сокращает продолжительность дисковой операции.

Показатели производительности

Среди многих возможных характеристик дисковых подсистем наиболее важными в прикладном смысле являются: время задержки, скорость передачи данных и число операций в единицу времени. При этом следует уточнять, о каких операциях идёт речь: записи или чтения.

Задержка

Как было сказано ранее, в общее время задержки можно включить разные фазы дисковых операций. Однако для операционной системы и приложений важен общий временной интервал между моментом отправки команды на выполнение дисковой операции и моментом начала получения её результата.

Если при записи данных результатом операции является короткое сообщение о её завершении, то при чтении данных их передача может иметь заметную продолжительность.

В значительной степени время задержки характеризует физические особенности носителя. В среднем, задержка дисковых операций с SSD существенно меньше задержки дисковых операций с HDD.

Читайте также:  Удалить одинаковые элементы массива php

У современных дисков в штатном режиме время задержки составляет единицы миллисекунд или даже доли миллисекунд.

Скорость передачи данных

Для замера скорости также требуется временной интервал между какими-то событиями. В качестве пары таких событий логично выбрать начало передачи данных и её окончание.

Определять скорость передачи данных лучше с помощью файлов большего размера с нерегулярным содержанием. Как правило, этим условиям соответствуют видео- или аудиофайлы, архивы сжатых файлов, большие jpeg-изображения и т. п.

В первую очередь, скорость передачи данных характеризует возможности контроллера, его пропускную способность. Это особенно относится к SSD-дискам.

Число дисковых операций

Во время реальной эксплуатации дисков редко бывает, что на них только записывают или с них только читают данные. Обычно запись и чтение постоянно чередуются между собой. Поэтому в качестве характеристики общей прикладной производительности диска был предложен такой показатель как число операций ввода-вывода в единицу времени: IOPS (Input/output Operations Per Second).

Для правильного сравнения дисков по этой характеристике нужно, чтобы тестовые замеры на каждом из дисков производились с одинаковыми порциями (блоками) данных. Сейчас в качестве таких «стандартных» порций для бытовых компьютеров часто используют блоки размером в 4 килобайта, а для серверов — в 32, 64 и даже 128 килобайтов.

В принципе, число операций с блоками одного размера можно пропорционально пересчитать в число операций с блоками другого размера, но это не будет достаточно корректным, так как удельные накладные расходы при обработке меньших блоков выше.

Другое важное обстоятельство. Как было отмечено при обсуждении скорости передачи данных контроллером диска, в реальности операции записи и чтения перемешаны между собой. — Но… в какой пропорции?

Однозначного ответа этот вопрос нет и быть не может. В одних системах данные чаще записывают, чем читают; в других — наоборот. Например, при видеохостинге данные, в основном, читают; в системах протоколирования (log-данные), видеонаблюдения или резервного копирования — записывают; в корпоративных информационных системах — и записывают, и читают.

Условно принято, что в средней информационной системы операции записи составляют четверть или треть от общего числа дисковых операций. Но в конкретной информационной системе соотношение между количеством операций записи и чтения может быть другим.

Для правильного тестирования дисковых подсистем нужно моделировать нагрузку

Заключение

Диски являются очень важной частью любой компьютерной системы: от настольного компьютера до большой корпоративной инфраструктуры. Их производительность сказывается на общей производительности системы.

Существует довольно много факторов, влияющих на скорость работы дисковой подсистемы. Частью из них можно управлять, другие изменить нельзя, но их тоже нужно принимать в расчёт.

Существует ряд утилит, позволяющих исследовать характеристики конкретной дисковой подсистемы. Они измеряют производительность исследуемых дисков, имитируя в разных режимах нагрузку на них. Однако число режимов, которые могут обеспечить эти утилиты, очень велико. Мы надеемся, что сведения, изложенные в этой статье, помогут выбрать правильные условия и параметры тестирования дисков, и конечно, лучше понять характеристики их производительности.

P. S. О чём ещё мы пишем в блоге 1cloud:

Жёсткий диск, HDD или винчестер – запоминающее устройство для постоянного хранения информации, основанное на принципе магнитной записи. HDD расшифровывается как Hard Disk Drive, отсюда и название – жёсткий: внутри корпуса устройства находятся диски из металла или стекла, на которых нанесено магнитное напыление. Именно на этот слой и записываются данные.

Сегодня на рынке HDD формата 3.5 дюйма представлены очень широко, причём есть разнообразие не только в объёме винчестеров, но и в скорости их работы, внутреннем устройстве, типе. В этих параметрах стоит разобраться, чтобы понять, какой жёсткий диск лучше приобрести.

Устройство и типы жёстких дисков

Как было сказано выше, жёсткий диск предназначен для постоянного хранения информации, и отличие его памяти от ОЗУ в том, что она энергонезависима – то есть сохраняется на носителе при отключении питания. Жёсткий диск представляет собой электромеханическое устройство, то есть имеет движущиеся детали, и состоит из нескольких основных частей.

Это интегральная схема, которая управляет процессами записи/чтения и работой диска. Она устанавливается поверх основного корпуса диска. В самом же корпусе спрятано сердце винчестера, состоящее из шпинделя (электромотора), который вращает диск; считывающей головки (коромысла), которое подвижно и считывает информацию непосредственно с поверхности носителя, и самих магнитных дисков памяти (их может быть разное количество, располагаются они один над другим, слоями).

На рынке сейчас распространены три типа жёстких дисков:

· SSHD – гибридный жёстки диск, с небольшим объёмом твердотельной флэш-памяти (вернёмся к этому типу позже)

· SSD– полностью твердотельный диск

SSD диски пока достаточно дороги, но выигрывают у HDD в скорости, SSHD – компромисс между твердотельными носителями и магнитными. Если обобщить общие преимущества и недостатки HDD по сравнению с SSD, то получим следующий список.

Преимущества HDD

· Стоимость — HDD диск 3.5” того же объёма обойдётся вам в 3-4 раза дешевле SSD · Объём – HDD формат может похвастаться моделями в 4, 6, 8, 10 ТБ, в то время как SSD достигают пока объёма в 1-2 ТБ, при этом имея заоблачный ценник · Высокий ресурс – нет ограничения циклов перезаписи, жёсткий диск скорее выработает свой механический ресурс (заявленное время наработки на отказ у некоторых моделей доходит до 1 млн. часов) · Возможность восстановить данные с неисправного диска – довольно важная особенность: пригождается редко, но бывает жизненно важна

Недостатки HDD

· Боязнь механических воздействий – даже лёгкий удар, влага, пыль, способны отправить ваш диск на тот свет. Происходит это из-за хрупкости самих магнитных носителей. К ремонту же HDD почти непригодны из-за допусков между деталями в микрометры · Низкая скорость – самый главный недостаток по сравнению с SDD. Отличие здесь может быть как минимум в несколько раз · Большие и тяжёлые – гораздо крупнее и массивнее твердотельных собратьев, из-за чего нежелательны в ноутбуках (хотя там и используется формат 2.5”), и не очень удобны для переноски · Шум и треск при работе – поскольку в диске есть механические части, шум бывает довольно ощутимым; тихим считается диск с шумом менее 26 дБ · Тепловыделение – электродвигатель диска может создавать приличный нагрев диска, тем больше, чем больше скорость вращения шпинделя

Выбрать именно HDD жёсткий диск 3.5” как основной можно смело рекомендовать любому, кто собирает настольный компьютер для дома. На сегодняшний день это позволит сэкономить средства, а для увеличения скорости загрузки операционной системы и работы программ лучше приобрести отдельный диск SSD небольшого объёма, или гибридный диск SSHD.

Гибридные жёсткие диски SSHD

Гибридный жёсткий диск, или SSHD, это простой магнитный жёстки диск, к которому добавлен небольшой объём флэш-памяти. В большинстве моделей это 8 ГБ. Немного, если сравнить с полноценным SSD.

Эта добавленная флэш-память служит в качестве кэша для диска, — вся информация, к которой обращения происходят часто, автоматически записывается именно во флэш-память, что многократно ускоряет доступ к ней. Принцип работы следующий: при обращении к диску информация сначала ищется в самом быстром кэше 1-го уровня (от 16 до 256 МБ, есть у каждого HDD), а после – в кэше 2-го уровня, которым и является твердотельная добавка в 8 ГБ.

Гибридный жёсткий диск не поможет вам загрузить быстрее операционную систему, поскольку флэш-память начинает работать только после загрузки системы, но работу с программами ускорит заметно. Также разница в максимальной скорости передачи файлов с обычным HDD будет невелика – порядка 15%, но вот скорость доступа к файлам может отличаться в десятки раз.

Читайте также:  Образ windows xp для vmware workstation

SSHD – это хороший выбор для домашнего медиа-диска, если вы хотите повысить общую скорость работы при большом объёме накопителя, и если скорость для вас важна, но не критична. Пожалуй, лучший выбор из магнитных жёстких дисков. Хотя и минусы тоже есть – цена на SSHD почти вдвое выше, и очень мало моделей поддерживает оптимизацию под RAID-массив (хотя в этом у рядового пользователя редкая необходимость).

Какого объёма кэша хватит?

Речь идёт о объёме кэша 1-го уровня – его величина может колебаться, можно встретить модели с объёмами от 16 до 256 МБ. Это высокоскоростная флэш-память, которая ускоряет работу жёсткого диска, но это ускорение незначительно (порядка 5-10%), и происходит не для всех операций. Например, при последовательном чтении с диска или переносе больших файлов разница в кэше заметна не будет.

Не стоит гнаться за максимальным значением данного параметра – эффективность работы кэша зависит больше от алгоритмов работы кэше, чем от его объёма, к тому же производители стараются для каждой модели подобрать максимально подходящий размер кэша.

Также объём кэша зависит от общей ёмкости жёсткого диска – для моделей до 500 ГБ стоит ориентироваться на 16 Мб кэша, при объёме до 2 ТБ кэш обычно составляет 32-64 МБ. Модели с кэшем 64 МБ и меньше при объёме диска больше 2 ТБ могут оказаться не самыми быстрыми вариантами, стоит это учитывать.

Для объёма диска 2 ТБ и более стандартный объём кэша – 128 МБ, причём для объёмов в 6-10 ТБ предпочтительней, естественно, кэш 256 МБ.

Хотя сам параметр кэша и не очень критичен для скорости работы HDD, но при небольшой разнице в стоимости лучше рассматривать модель с большим объёмом.

Скорость вращения шпинделя – 5400 или 7200?

Один из главных параметров жёсткого диска, непосредственно влияющий на скорость работы: чем физически быстрее считывающая головка окажется в нужной позиции, тем быстрее произойдёт чтение/запись. На сегодняшний день существует средний разброс по скорости стандартных HDD – от 5400 до 7200 об/м. Есть также диски с оборотами в 10 000 об/мин и более, но они на сегодня теряют смысл из-за высокой цены, сопоставимой с SSD дисками или даже дороже, и при этом уступают им в скорости и надёжности.

· 5400 об/м – самая низкая из возможных скорость вращения. Есть вариации чуть побыстрее, со скоростями в 5700-5940 об/м. Такие жёстки диски обладают наименьшей скоростью, но при этом слабее греются, малошумны и долговечны из-за пониженной нагрузки на механический узел. Стоит выбирать, если нужен максимальный объём и надёжность – хорошо подойдут в качестве «библиотечного» хранилища данных, или для хранения информации повышенной важности. Также подойдут в малогабаритные системы, где важно малое тепловыделение.

· 7200 об/м – стандартная скорость HDD, ей обладают большинство моделей. По скорости могут превосходить 5400 об/м в среднем в 1,5 раза. Если вы выбираете HDD в стандартный корпус пк, для вас не критичны небольшой шум и в корпусе организована нормальная система вентиляции то при выборе лучше ориентироваться именно на эту скорость. Перегрев HDD совсем не любят, диски 7200 об/м более чувствительны к режиму эксплуатации.

· IntelliPower – технология, которая предполагает выбор для каждого HDD индивидуальной скорости на этапе тестирования. В итоге скорость таких дисков колеблется около 5400 об/мин. Результат — уменьшено тепловыделение и шанс поломок, также в теории повышается долговечность.

Максимальная скорость передачи данных

Не всегда конечный параметр скорости передачи данных определяет скорость шпинделя – кроме этого есть ещё алгоритмы работы и внутренняя конструкция самого жёсткого диска. Например, на скорость может влиять количество магнитных дисков внутри – ёмкость в 1 ТБ может состоять как из 1-го диска, так и из 4-ёх по 250 ГБ.

Таким образом, по скорости можно выделить две группы HDD –со средними скоростями до 200 Мб/с, и более дорогая, но и самая скоростная среди магнитных жёстких дисков группа со скоростью более 200 Мб/с.

Дорогие модели HDD могут отличаться от дешёвых при равном объёме именно скоростью передачи данных, она будет заметно выше, благодаря многим факторам: может быть лучше оптимизирована кэш-память, иначе организован электро-механический узел, разное количество магнитных дисков на равный объём. Также зачастую дорогие диски более надёжны и устойчивы к внешним воздействиям.

Скорость передачи данных – совокупный результат всех остальных параметров и применённых в диске технологий, поэтому, если ваш выбор зависит в основном от скорости диска, то удобно ориентироваться именно по нему. Чем более диск скоростной, тем он будет дороже.

Какой объём выбрать?

· 250 — 500 ГБ – стоит выбрать как бюджетный вариант, или в офисный пк, когда не требуется большого объёма для хранения медиа-файлов. Для установки программ и системы, впрочем, места вполне хватит. Также небольшой объём, в случае скоростной модели, можно использовать исключительно для установки операционной системы, а данные хранить на более медленно диске большего объёма.

· 1 Тб — 4 ТБ – такой объём подойдёт для домашнего компьютера, хватит для хранения большой коллекции фильмов в hd-разрешениях. Объём минимум в 1 ТБ сейчас является стандартным для рядового пользователя.

· 5 — 10 Тб – максимальный объём для жёстких магнитных дисков на сегодня. Обойдётся вам весьма дорого, и скорее необходим при работе с большими объёмами файлов, например, при профессиональном монтаже. Как вариант – создание RAID массива такого же объёма из дисков по 1-2 ТБ, что позволит увеличить скорость.

На что ещё обратить внимание?

· Оптимизация под RAID-массив. Понадобится, если вы хотите создать массив из нескольких дисков. Смысл в том, что вместо нескольких отдельных дисков система начинает видеть один объединённый, что в разных типах массива повышает скорость или надёжность. Однозначно стоит выбирать, если вам нужна максимальная надёжность или максимальная скорость в массиве.

· Толщина. Почти не имеет значения при установке в стандартный корпус, но может быть важной при монтаже, например, в тонких desktop-корпусах. Зависит в первую очередь от количества магнитных дисков, и может быть либо около 20 мм, или около 25 мм.

Ценовые категории

До 5000 рублей – можно позволить себе стандартный жёсткий магнитный диск ёмкостью до 2 ТБ, без кэша второго уровня. В этой группе лучше обратить внимание на модели ёмкостью в 500 ГБ – 1 ТБ. Они вряд ли будут отличаться высокими параметрами скорости, но это хороший и недорогой вариант, если вам нужен просто винчестер для рабочего компьютера.

От 5000 до 10000 рублей — в этой группе выбор будет зависеть от ваших основных требований – можно либо стремиться к максимальному объёмы накопителя, и приобрести 4 ТБ диск, либо обратить внимание на скорость работы, и тогда лучший выбор – гибридный диск SSHD объёмом до 2 ТБ. Также вы сможете себе позволить за эти деньги организовать RAID массив объёмом в 1-2 ТБ.

От 10000 до 20000 рублей – неплохим приобретением станет SSHD уже на 4 ТБ. Возможности растут пропорционально вложенным средствам – доступный объём увеличивается вплоть до 6-8 ТБ, при этом можно найти модель с повышенной скоростью передачи данных, от 200 Мб/с.

От 20000 рублей — возможности растут пропорционально вложенным средствам, и с таким бюджетом можно приобрести диски максимальным объёмом среди HDD10 ТБ, причём с большой скоростью и повышенной надёжностью. А также создать RAID массив огромной ёмкости. Единственный вариант, если жизненно важен именно максимальный объём хранилища. Приобретать стоит в профессиональных целях, вряд ли такое количество терабайт сможет заполнить рядовой пользователь.

Ссылка на основную публикацию
Что делать если завис телефон андроид
Что делать, если завис Андроид и не реагирует не на что? В этой статье мы посмотрим четыре простых способа как...
Фум лента в стоматологии фото
Автор: G. Freedman Перевод: Александр Зыбайло Автор: G. Freedman Перевод: Александр Зыбайло Ограничение количества цемента для фиксации и использование определенной...
Функции жесткого диска в компьютере
Жесткий диск, он же винчестер, является основным местом, где хранится вся информация. В отличие от оперативной памяти, он энергетически независим,...
Что дают за рейтинговые бои
В кои-то веки разработчики решили прислушаться к мнению игроков и ввести в Варфейс рейтинговые матчи. Теперь каждый игрок, достигший 26...
Adblock detector