Фаза колебаний в момент времени t равна

Фаза колебаний в момент времени t равна

Фаза колебаний — это аргумент периодически изменяющейся функции, описывающей колебательный или волновой процесс. Для гармонических колебаний:

где φ = ωt + φ — фаза колебания, А — амплитуда, ω — круговая частота, t — время, φ — началь­ная (фиксированная) фаза колебания; в момент времени t = 0φ = φ. Фаза выражается в радианах.

Фаза гармонического колебания при постоянной амплитуде определяет не только координату колеблющегося тела в любой момент времени, но и скорость и ускорение, которые тоже изменяются по гармоническому закону (скорость и ускорение гармонических колебаний — это первая и вторая производные по времени функции (см. рис. ниже), которые, как известно, снова дают синус и косинус). Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние ко­лебательной системы в любой момент времени.

Два колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами. Так как ω = 2π/Т, то

Отношение t/T показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выра­женному в долях периода, соответствует значение фазы, выраженной в радианах.

Сплошная кривая на рисунке — это зависимость координаты от времени и одновременно от фа­зы колебаний (верхние и нижние значения на оси абсцисс соответственно) для точки, совершающей гармонические колебания по закону:

Здесь начальная фаза равна нулю φ = 0. В начальный момент времени амплитуда максимальна. Это соответствует случаю колебаний тела, прикрепленного к пружине (или маятника), которое в начальный момент времени отвели от положения равновесия и отпустили. Описание колебаний, начинающихся из положения равновесия (например, при кратковременном толчке покоящегося шарика), удобнее вести с помощью функции синуса:

Как известно, cos φ = sin (φ + π/2), поэтому колебания, описываемые уравнениями x = xm cos ω t и x = xm sin ω t, отличаются друг от друга только фазами. Разность фаз, или сдвиг фаз, составляет π/2. Чтобы определить сдвиг фаз, нужно колеблющуюся величину выразить через одну и ту же три­гонометрическую функцию — косинус или синус. Пунктирная кривая на рисунке выше (это график уравнения x = xm sin ω t) сдвинута относительно сплошной на π/2.

Еще одной характеристикой гармонических колебаний является фаза колебаний.

Читайте также:  Какую видеокарту выбрать для world of tanks

Как нам уже известно, при заданной амплитуде колебаний, в любой момент времени мы можем определить координату тела. Она будет однозначно задаваться аргументом тригонометрической функции φ = ω0*t. Величина φ, которая стоит под знаком тригонометрической функции, называется фазой колебаний.

Для фазы единицами измерения являются радианы. Фаза однозначно определяет не только координату теда в любой момент времени, но так же скорость или ускорение. Поэтому считается, что фаза колебаний определяет состояние колебательной системы в любой момент времени.

Конечно же при условии что задана амплитуда колебаний. Два колебания, у которых одинаковые частота и период колебаний могут отличаться друг от друга фазами.

Если выразить время t в количестве периодов, которые пройдены от начала колебаний, то любому значению времени t, соответствует значение фазы, выраженной в радианах. Например, если взять время t = Т/4, то этому значению будет соответствовать значение фазы pi/2.

Таким образом, мы можем изобразить график зависимости координаты не от времени, а от фазы, и получим точно такую же зависимость. На следующем рисунке представлен такой график.

Начальная фаза колебаний

При описании координаты колебательного движения мы использовали функции синуса и косинуса. Для косинуса мы записывали следующую формулу:

Но мы можем описать эту же траекторию движения и с помощью синуса. При этом нам необходимо сдвинуть аргумент на pi/2, то есть отличие синуса от косинуса — pi/2 или четверть периода.

Значение pi/2 называется начальной фазой колебания. Начальная фаза колебания — положение тела в начальный момент времени t = 0. Для того, чтобы заставить маятник колебаться, мы должны вывести его из положения равновесия. Мы можем это сделать двумя путями:

  • Отвести его в сторону и отпустить.
  • Ударить по нему.
Читайте также:  Universal silent switch finder

В первом случае, мы сразу же изменяем координату тела, то есть, в начальный момент времени координата будет равна значению амплитуды. Для описания такого колебания удобнее использовать функцию косинуса и форму

либо же формулу

где φ- начальная фаза колебания.

Если мы ударим по телу, то в начальный момент времени его координата равняется нулю, и в таком случае удобнее использовать форму:

Два колебания, которые различаются только начальной фазой, называются сдвинутыми по фазе.

Например, для колебаний описанных следующими формулами:

сдвиг фаз равен pi/2.

Сдвиг фаз еще иногда называют разностью фаз.

На следующем рисунке представлены два колебания сдвинутые друг относительно друга на разность фаз pi/2.

Нужна помощь в учебе?

Предыдущая тема: Гармонические колебания: амплитуда и период колебаний
Следующая тема:&nbsp&nbsp&nbspПревращение энергии при гармонических колебаниях: формулы и рисунки

Все неприличные комментарии будут удаляться.

Ответ

Ответ: амплитуда, циклическая частота, частота, период, начальная фаза — не зависят от момента времени и равны:

амплитуда 8 м,

циклическая частота π рад/с,

частота 2*π*f=π⇒f=0,5 Гц,

период 1/f=1/0,5=2 c,

начальная фаза π/4 радиан.

Фаза колебаний при t=2 равна 2*π+π/4=(8*π+π)/4=9*π/4=2,25*π рад.

Ссылка на основную публикацию
Усики для автомобильной антенны
Убираясь в бардачке я наткнулся на ремкомплект антенных усиков — лежит наверно уже полгода, всё наклеить не могу, то забываю,...
Телефонный шлюз что это
VoIP-шлюз — это межсетевой шлюз, предназначенный для перевода трафика между сетями различных типов. VoIP-шлюзы можно разделить на многоканальные и одноканальные:...
Телефонная клавиатура на компьютере
Виртуальная клавиатура выручит Вас, когда выйдет из строя основное физическое устройство ввода, полностью или частично ( поломается несколько клавиш )....
Усиление сигнала интернета на даче своими руками
С наступление дачного сезона, я озадачился установкой хорошего скоростного интернет на даче, у нас голосовая связь работает без проблем, а...
Adblock detector