Формулы связи параметров эллипса

Формулы связи параметров эллипса

Точки F1(–c, 0) и F2(c, 0), где называются фокусами эллипса, при этом величина 2c определяет междуфокусное расстояние.

Точки А1(–а, 0), А2(а, 0), В1(0, –b), B2(0, b) называются вершинами эллипса (рис. 9.2), при этом А1А2 = 2а образует большую ось эллипса, а В1В2 – малую, – центр эллипса.

Основные параметры эллипса, характеризующие его форму:

ε = с/aэксцентриситет эллипса;

фокальные радиусы эллипса (точка М принадлежит эллипсу), причем r1 = a + εx, r2 = aεx;

директрисы эллипса.

Для эллипса справедливо: директрисы не пересекают границу и внутреннюю область эллипса, а также обладают свойством

Эксцентриситет эллипса выражает его меру «сжатости».

Если b > a > 0, то эллипс задается уравнением (9.7), для которого вместо условия (9.8) выполняется условие

. (9.9)

Тогда 2а – малая ось, 2b – большая ось, – фокусы (рис. 9.3). При этом r1 + r2 = 2b,
ε = c/b, директрисы определяются уравнениями:

При условии имеем (в виде частного случая эллипса) окружность радиуса R = a. При этом с = 0, а значит, ε = 0.

Точки эллипса обладают характеристическим свойством: сумма расстояний от каждой из них до фокусов есть величина постоянная, равная 2а (рис. 9.2).

Для параметрического задания эллипса (формула (9.7)) в случаях выполнения условий (9.8) и (9.9) в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на эллипсе, и положительным направлением оси Ox:

где

Если центр эллипса с полуосями находится в точке то его уравнение имеет вид:

(9.10)

Пример 1. Привести уравнение эллипса x 2 + 4y 2 = 16 к каноническому виду и определить его параметры. Изобразить эллипс.

Решение. Разделим уравнение x 2 + 4y 2 = 16 на 16, после чего получим:

По виду полученного уравнения заключаем, что это каноническое уравнение эллипса (формула (9.7)), где а = 4 – большая полуось, b = 2 – малая полуось. Значит, вершинами эллипса являются точки A1(–4, 0), A2(4, 0), B1(0, –2), B2(0, 2). Так как – половина междуфокусного расстояния, то точки являются фокусами эллипса. Вычислим эксцентриситет:

Изображаем эллипс (рис. 9.4).

Пример 2. Определить параметры эллипса

Решение. Сравним данное уравнение с каноническим уравнением эллипса со смещенным центром. Находим центр эллипса С: Большая полуось малая полуось прямые – главные оси. Половина междуфокусного расстояния а значит, фокусы Эксцентриситет Директрисы D1 и D2 могут быть описаны с помощью уравнений: (рис. 9.5).

Пример 3. Определить, какая кривая задается уравнением, изобразить ее:

3) x 2 + 4y 2 – 2x + 16y + 1 = 0; 4) x 2 + 4y 2 – 2x + 16y + 17 = 0;

5)

Решение. 1) Приведем уравнение к каноническому виду методом выделения полного квадрата двучлена:

(x 2 + 4x + 4) – 4 + (y 2 – 2y + 1) – 1 + 4 = 0;

Таким образом, уравнение может быть приведено к виду

Это уравнение окружности с центром в точке (–2, 1) и радиусом R = 1 (рис. 9.6).

2) Выделяем полные квадраты двучленов в левой части уравнения и получаем:

Это уравнение не имеет смысла на множестве действительных чисел, так как левая часть неотрицательна при любых действительных значениях переменных x и y, а правая – отрицательна. Поэтому говорят, что это уравнение «мнимой окружности» или оно задает пустое множество точек плоскости.

3) Выделяем полные квадраты:

(x 2 – 2x + 1) – 1 + 4(y 2 + 4y + 4) – 16 + 1 = 0;

(x – 1) 2 + 4(y + 2) 2 – 16 = 0;

Значит, уравнение имеет вид:

или

Полученное уравнение, а следовательно, и исходное задают эллипс. Центр эллипса находится в точке О1(1, –2), главные оси задаются уравнениями y = –2, x = 1, причем большая полуось а = 4, малая полуось b = 2 (рис. 9.7).

4) После выделения полных квадратов имеем:

(x – 1) 2 + 4(y + 2) 2 – 17 + 17 = 0 или (x – 1) 2 + 4(y + 2) 2 = 0.

Читайте также:  Тор браузер ссылки на детское

Полученное уравнение задает единственную точку плоскости с координатами (1, –2).

5) Приведем уравнение к каноническому виду:

Очевидно, оно задает эллипс, центр которого находится в точке главные оси задаются уравнениями причем большая полуось малая полуось (рис. 9.8).

Пример 4. Записать уравнение касательной к окружности радиуса 2 с центром в правом фокусе эллипса x 2 + 4y 2 = 4 в точке пересечения с осью ординат.

Решение. Уравнение эллипса приведем к каноническому виду (9.7):

Значит, и правый фокус – Поэтому, искомое уравнение окружности радиуса 2 имеет вид (рис. 9.9):

Окружность пересекает ось ординат в точках, координаты которых определяются из системы уравнений:

Пусть это точки N (0; –1) и М (0; 1). Значит, можно построить две касательные, обозначим их Т1 и Т2. По известному свойству касательная перпендикулярна радиусу, проведенному в точку касания.

Пусть Тогда уравнение касательной Т1 примет вид:

значит, или Т1:

Тогда уравнение касательной Т2 примет вид:

значит, или Т2:

Пример 5. Записать уравнение окружности, проходящей через точку М(1, –2) и точки пересечения прямой x – 7y + 10 = 0 с окружностью x 2 + y 2 – 2x + 4y – 20 = 0.

Решение. Найдем точки пересечения прямой x – 7y + 10 = 0 с окружностью x 2 + y 2 – 2x + 4y – 20 = 0, решив систему уравнений:

Выразим х из первого уравнения системы:

Затем подставим во второе:

(7y – 10) 2 + y 2 – 2(7y – 10) + 4y – 20 = 0.

Оно равносильно уравнению

Используя формулы корней квадратного уравнения, найдем y1 = 1, y2 = 2, откуда x1 = –3, x2 = 4.

Итак, имеем три точки, лежащие на окружности: M(1, –2), M1(4, 2) и M2(–3, 1). Пусть О1(x, y) – центр окружности. Тогда где R – радиус окружности.

Найдем координаты векторов:

что равносильно системе

Решая последнюю систему, получаем ответ:

Таким образом, центр окружности находится в точке (0,5; 1,5), ее радиус

Тогда каноническое уравнение искомой окружности имеет вид:

Дата добавления: 2015-09-29 ; просмотров: 4524 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Читайте также:  Почему itunes не синхронизирует iphone

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

Читайте также:  Что значит механическая обвалка курицы

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа "эр" с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Определение. Эллипс — это геометрическая фигура, которая ограничена кривой, заданной уравнением .

Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

Чертеж фигуры эллипс

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси связаны соотношением:

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2*(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r1 + r 2 = a – c + a + c. Т.к. по определению сумма r1 + r 2 – постоянная величина, то , приравнивая, получаем:

Эксцентриситет фигуры эллипс

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .

Если a = b ( c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х 1 , у 1 ) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне его.

Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :

Доказательство. Выше было показано, что r1 + r2 = 2 a . Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r2 = a + ex . Теорема доказана.

Директрисы фигуры эллипс

С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:

x = a / e ; x = — a / e .

Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением :

• Координаты нижней вершины: x = 0; y 2 = 16; y = -4.

• Координаты левого фокуса: c 2 = a 2 – b 2 = 25 – 16 = 9; c = 3; F2 (-3; 0).

• Уравнение прямой, проходящей через две точки:

Пример. Составить уравнение границы фигуры эллипс, если его фокусы F 1 (0; 0), F2 (1; 1), большая ось равна 2.

Уравнение границы имеет вид: . Расстояние между фокусами:

2 c = , таким образом, a 2 – b 2 = c 2 = 1/2

по условию 2а = 2, следовательно а = 1, b =

Итого искомое уравнение имеет вид: .

Ссылка на основную публикацию
Усики для автомобильной антенны
Убираясь в бардачке я наткнулся на ремкомплект антенных усиков — лежит наверно уже полгода, всё наклеить не могу, то забываю,...
Телефонный шлюз что это
VoIP-шлюз — это межсетевой шлюз, предназначенный для перевода трафика между сетями различных типов. VoIP-шлюзы можно разделить на многоканальные и одноканальные:...
Телефонная клавиатура на компьютере
Виртуальная клавиатура выручит Вас, когда выйдет из строя основное физическое устройство ввода, полностью или частично ( поломается несколько клавиш )....
Усиление сигнала интернета на даче своими руками
С наступление дачного сезона, я озадачился установкой хорошего скоростного интернет на даче, у нас голосовая связь работает без проблем, а...
Adblock detector