Пример дифференциальный уравнение первого степени

Пример дифференциальный уравнение первого степени

  • Попробуйте решить приведенные ниже дифференциальные уравнения.
  • Нажмите на изображение уравнения, и вы попадете на страницу с подробным решением.

Примеры решений дифференциальных уравнений первого порядка

Примеры решений дифференциальных уравнений второго и высших порядков

Примеры решений линейных уравнений в частных производных первого порядка

Найти общее решение линейного однородного уравнения в частных производных первого порядка и решить задачу Коши с указанным граничным условием:
,
при .

Найти поверхность, удовлетворяющую данному уравнению
,
и проходящую через данную окружность
, .

Автор: Олег Одинцов . Опубликовано: 28-01-2016

Дифференциальное уравнение называется линейным, если в нём функция и все её производные содержатся только в первой степени, отсутствуют и их произведения.

Общий вид линейного дифференциального уравнения первого порядка таков:

,

где и — непрерывные функции от x.

Как решить линейное дифференциальное уравнение первого порядка?

Интегрирование такого уравнения можно свести к интегрированию двух двух дифференциальных уравнений первого порядка с разделяющимися переменными. Великие математики доказали, что нужную функцию, то есть решение уравнения, можно представить в виде произведения двух неизвестных функций u(x) и v(x). Пусть y = uv, тогда по правилу дифференцирования произведения функций

и линейное дифференциальное уравнения первого порядка примет вид

. (*)

Выберем функцию v(x) так, чтобы в этом уравнении выражение в скобках обратилось в нуль:

,

то есть в качестве функции v берётся одно из частных решений этого уравнения с разделяющимися переменными, отличное от нуля. Разделяя в уравнении переменные и выполняя затем его почленное интегрирование, найдём функцию v. Так как функция v — решение уравнения, то её подстановка в уравнение даёт

.

Таким образом, для нахождения функции u получили дифференциальное уравнение первого порядка с разделяющимися переменными. Найдём функцию u как общее решение этого уравнения.

Теперь можем найти решение исходного линейного дифференциального уравнения первого порядка. Оно равно произведению функций u и v, т. е. y = uv. u и v уже нашли.

Пример 1. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Как было показано в алгоритме, y = uv. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

и, интегрируя находим u:

Теперь можно записать общее решение данного линейного дифференциального уравнения первого порядка:

Как видим, всё решение выполняется точным следованием алгоритму, приведённому в начале статьи. Меняются лишь виды функций в уравнениях. Степени, корни, экспоненты и т.д. Это чтобы алгоритм отпечатался в памяти и был готов к разным случаям, которые только могут быть на контрольной и экзамене. А кому стало скучно, наберитесь терпения: впереди ещё примеры с интегрированием по частям!

Читайте также:  Признак описанной окружности около четырехугольника

Важное замечание. При решении заданий не обойтись без преобразований выражений. Для этого требуется открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Пример 2. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

.

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные:

и, интегрируя находим u:

Теперь можно записать общее решение данного линейного дифференциального уравнения первого порядка:

В следующем примере — обещанная экспонента.

Пример 3. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находимu:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Любители острых ощущений дождались примера с интегрированием по частям. Таков следующий пример.

Пример 4. Решить линейное дифференциальное уравнение первого порядка

.

Решение. В этом случае сначала нужно добиться, чтобы производная "игрека" ни на что не умножалась. Для этого поделим уравнение почленно на "икс" и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируем по частям.

В интеграле , .

Тогда .

Интегрируем и находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

И уж совсем странной статья о дифференциальных уравнениях была бы без примера с тригонометрическими функциями.

Пример 5. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Читайте также:  Как подключить беспроводной монитор android

В последних двух примерах требуется найти частное решение уравнения.

Пример 6. Найти частное решение линейного дифференциальное уравнение первого порядка

при условии .

Решение. Чтобы производная "игрека" ни на что не умножалась, разделим уравнение почленно на и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Найдём частное решение уравнения. Для этого в общее решение подставим и и найдём значение C:

Подставляем значение C и получаем частное решение данного линейного дифференциального уравнения первого порядка:

.

Пример 7. Найти частное решение линейного дифференциального уравнения первого порядка

при условии .

Перенесём функцию "игрека" в левую часть и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

.

Первый интеграл равен , второй находим интегрированием по частям.

В нём , .

Тогда , .

Находим второй интеграл:

.

В результате получаем функцию u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Найдём частное решение уравнения. Для этого в общее решение подставим и и найдём значение C:

Подставляем значение C и получаем частное решение данного линейного дифференциального уравнения первого порядка:

.

Выводы. Алгоритм решения линейных дифференциальных уравнений первого порядка достаточно однозначен. Трудности чаще всего возникают при интегрировании и это означает, что следует повторить этот обширный раздел математического анализа. Кроме того, что особенно видно из примеров ближе к концу статьи, очень важно владеть приёмами действий со степенями и дробями, а это школьные темы, и если они подзабыты, то их тоже следует повторить. Совсем простых "демо"-примеров ждать на контрольной и на экзамене не стоит.

Дифференциальное уравнение – это соотношение, имеющее вид F(x1,x2,x3. y,y′,y′′. y (n) ) = 0, и которое связывает независимые переменные x1,x2,x3. функцию y этих независимых переменных и ее производные до n-го порядка. Причем функция F определяется и достаточное число раз дифференцируется в некоторой области изменения своих аргументов.

Читайте также:  Что будет если положить камень на рельсы

Обыкновенные дифференциальные уравнения – это дифференциальные уравнения, содержащие лишь одну независимую переменную.

Дифференциальные уравнения в частных производных – это дифференциальные уравнения, в которых содержится 2 и более независимых переменных.

Дифференциальное уравнение 1-го порядка в общем случае содержит:

1) независимую переменную х;

2) зависимую переменную y (функцию);

3) первую производную функции: y.

В некоторых уравнениях первого порядка может отсутствовать х или (и) y, но это не существенно – важно чтобы в дифференциальных уравнениях была 1-я производная y, и не было производных высших порядков – y’’, y’’’ и так далее.

Дифференциальное уравнение — уравнение, которое связывает значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть разным (формально он не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях либо все, кроме хотя бы 1-й производной, отсутствовать совсем. Не каждое уравнение, которое содержит производные неизвестной функции, оказывается дифференциальным уравнением. Например, не есть дифференциальным уравнением.

Дифференциальное уравнение порядка выше 1-го можно преобразовать в систему уравнений 1-го порядка, в которой количество уравнений равняется порядку начального уравнения.

Классификация дифференциальных уравнений.

Порядок дифференциального уравнения – это порядок старшей производной, которая входит в него.

Степень дифференциального уравнения – это показатель степени, в которую возведена производная самого высокого порядка.

Например, уравнение 1-го порядка 2-й степени:

Например, уравнение 4-го порядка 1-й степени:

Бывает дифференциальные уравнения записывают как (в него входят дифференциалы):

В таком случае переменные x и y нужно полагать равноправными. Если нужно, подобное уравнение приводят к виду, в котором явно содержится производная y’. Разделим на dx:

так как и , значит, уравнение принимает вид, который содержит производную 1-го порядка:

Виды дифференциальных уравнений.

  • Простейшие дифференциальные уравнения 1-го порядка типа.
  • Дифференциальные уравнения с разделяющимися переменными вида либо .
  • Линейные неоднородные дифференциальные уравнения 1-го порядка.
  • Дифференциальное уравнение Бернулли.
  • Уравнения в полных дифференциалах.

  • Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
  • Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
  • Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) 2-го порядка .

3. Дифференциальные уравнения высших порядков.

  • Дифференциальные уравнения, которые допускают понижение порядка.
  • Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентамии .
  • Линейные однородные и неоднородные дифференциальные уравнения высших порядкови .

4. Системы дифференциальных уравнений вида .

Ссылка на основную публикацию
Представьте что вы приглашены
Обратить внимание на структуру урока: Цель: мотивировать деятельность учащихся на уроке; Эмоционально настроить детей на работу. 2. Словарно – орфографическая...
Потух экран на ноутбуке что делать
В этой статье мы рассмотрим возможные решения проблемы, когда ноутбук работает но не включается экран. Это может произойти с каждым...
Поцарапала сковороду с антипригарным покрытием что делать
Сковорода с антипригарным напылением — это современная кухонная утварь, которая есть почти на каждой кухне. Благодаря покрытию пища не прилипает...
Правила покупки билетов на поезд
» Железнодорожный транспорт » Правила продажи билетов на поезд Как купить железнодорожные билеты на поезд? Проездные документы действительны только по...
Adblock detector