Снабберы на диодный мост

Снабберы на диодный мост

Причина, по которой прибегают к использованию снабберов

В ходе разработки силового импульсного преобразователя (особенно это касается мощных устройств топологий push-pull и forward, где переключение происходит в жестких режимах), необходимо как следует позаботиться о защите силовых ключей от пробоя по напряжению.

Несмотря на то, что в документации на полевик указано предельное напряжение между стоком и истоком в 450, 600 или даже в 1200 вольт, одного случайного высоковольтного импульса на стоке может оказаться достаточно для выхода дорогостоящего (даже и высоковольтного) ключа из строя. Да еще и соседние элементы схемы, включая дефицитный драйвер, могут попасть под удар.

Такое событие сразу приведет к куче проблем: где достать аналогичный транзистор? Есть ли он сейчас в продаже? Если нет, то когда появится? Насколько качественным окажется новый полевик? Кто, когда и за какие деньги возьмется все это перепаивать? Как долго продержится новый ключ и не повторит ли он судьбу своего предшественника? и т. д. и т. п.

В любом случае лучше сразу перестраховаться, и еще на этапе проектирования устройства принять меры для предотвращения подобных неприятностей на корню. Благо, известно надежное, недорогое и простое в своей реализации решение на пассивных компонентах, давно ставшее популярным как у любителей высоковольтной силовой техники, так и у профессионалов. Речь о простейшем RCD-снаббере.

Традиционно для импульсных преобразователей, в цепь стока транзистора включена индуктивность первичной обмотки трансформатора или дросселя. И при резком запирании транзистора в условиях, когда коммутируемый ток еще не понизился до безопасной величины, согласно закону электромагнитной индукции на обмотке возникнет высокое напряжение, пропорциональное индуктивности обмотки и скорости перехода транзистора из проводящего состояния в запертое.

Если фронт при этом достаточно крут, а общая индуктивность обмотки в цепи стока транзистора существенна, то высокая скорость нарастания напряжения между стоком и истоком мгновенно приведет к катастрофе. Чтобы эту скорость роста напряжения понизить и облегчить тепловой режим запирания транзистора — между стоком и истоком защищаемого ключа ставят RCD-снаббер.

Как работает RCD-снаббер

RCD-cнаббер работает следующим образом. В момент запирания транзистора ток первичной обмотки, в силу наличия у нее индуктивности, не может мгновенно снизиться до нуля. И вместо того чтобы жечь транзистор, заряд, под действием высокой ЭДС, устремляется через диод D в конденсатор C снабберной цепи, заряжая его, а транзистор при этом закрывается в мягком режиме незначительного тока через его переход.

Когда транзистор вновь начнет открываться (резко переходя в проводящее состояние для отработки очередного периода коммутации), конденсатор снаббера станет разряжаться, но уже не через голый транзистор, а через снабберный резистор R. А так как сопротивление снабберного резистора в несколько раз больше сопротивления перехода сток-исток, то основная часть запасенной в конденсаторе энергии выделится именно на резисторе, а не на транзисторе. Таким образом RCD-снаббер поглощает и рассеивает энергию паразитного высоковольтного выброса c индуктивности.

Расчет снабберной цепи

P – мощность, рассеиваемая на резисторе снаббера C – емкость конденсатора снаббера t – время запирания транзистора, за которое конденсатор снаббера заряжается U – максимальное напряжение, до которого зарядится конденсатор снаббера I – ток через транзистор до его закрытия f- сколько раз в секунду будет срабатывать снаббер (частота переключения транзистора)

Чтобы рассчитать номиналы элементов защитного снаббера, для начала задаются временем, за которое транзистор в данной схеме переходит из проводящего состояния в запертое. За это время конденсатор снаббера должен успеть зарядиться через диод. Здесь в расчет принимается средний ток силовой обмотки, от которого предстоит защищаться. А напряжение питания обмотки преобразователя позволит выбрать конденсатор с подходящим максимальным напряжением.

Далее необходимо вычислить мощность, которая должна будет рассеиваться на резисторе снаббера, и уже после этого подобрать конкретный номинал резистора, исходя из временных параметров полученной RC-цепи. При том сопротивление резистора не должно быть слишком малым, чтобы когда при запирании ключа конденсатор начнет разряжаться через него, импульс максимального разрядного тока вместе с рабочим током не превысили бы критическую для транзистора величину. Не должно это сопротивление быть и слишком большим, чтобы конденсатор все же успел разрядиться, пока транзистор отрабатывает положительную часть рабочего периода.

Рассмотрим пример

Сетевой двухтактный инвертор (амплитуда напряжения питания 310 вольт) потребляющий мощность 2 кВт работает на частоте 40 кГц, причем максимальное напряжение между стоком и истоком для его ключей составляет 600 вольт. Необходимо рассчитать RCD-снаббер для этих транзисторов. Пусть время запирания транзистора в схеме составляет 120 нс.

Средний ток обмотки 2000/310 = 6,45 А. Пусть напряжение на ключе не превысит 400 вольт. Тогда C = 6,45*0,000000120/400 = 1,935 нФ. Выберем пленочный конденсатор емкостью 2,2 нФ на 630 вольт. Мощность, поглощаемая и рассеиваемая каждым снаббером за 40000 периодов составит P = 40000*0.0000000022*400*400/2 = 7,04 W.

Допустим, минимальная скважность импульса на каждом из двух транзисторов составляет 30%. Значит минимальное время открытого состояния каждого транзистора будет равно 0,3/80000 = 3,75 мкс, с учетом фронта примем 3,65 мкс. Примем 5% этого времени за 3*RC, и пусть за это время конденсатор успеет почти полностью разрядиться. Тогда 3*RC = 0,05*0,00000365. Отсюда (подставим C = 2.2 нФ) получим R = 27,65 Ом.

Установим по два пятиваттных резистора по 56 Ом параллельно в каждый снаббер нашего двухтактника, и получится 28 Ом для каждого снаббера. Импульсный ток от срабатывания снаббера при разряде конденсатора через сопротивление составит 400/28 = 14,28 А — это ток в импульсе, который пройдет через транзистор в начале каждого периода. Согласно документации на большинство популярных силовых транзисторов, максимально допустимый импульсный ток для них превосходит максимальный средний ток минимум в 4 раза.

Что касается диода, то в схему RCD-снаббера ставиться импульсный диод на такое же максимальное напряжение как у транзистора, и способный в импульсе выдерживать максимальный ток, протекающий через первичную цепь данного преобразователя.

Итак, для начала определимся с объектом нашей борьбы. Для этого рассмотрим схему синхронного buck-конвертера и осциллограмму напряжения, снятую в точке 1 в момент открытия верхнего и закрытия нижнего транзисторов:

Видите синусоиду? Вот с этими паразитными колебаниями мы и будем бороться.

А зачем, собственно, нам это нужно? Да потому, что эти колебания могут вызвать ряд очень неприятных последствий. Одним из таких последствий является перенапряжение, которое может привести к повторному открытию нижнего транзистора или даже к его лавинному пробою. Кроме того, паразитные высокочастотные колебания могут попасть в нагрузку и привести к нарушению работы её компонентов.

Читайте также:  Свобода равенство и братство масоны

Давайте разберёмся, откуда возникают эти паразитные колебания. Возникают они следующим образом: во время выключения нижнего транзистора на его встроенном защитном диоде кратковременно возникает мощный импульс обратного восстанавливающего тока. Поскольку в контуре всегда присутствует некоторая паразитная индуктивность и ёмкость, то образуется колебательный контур, в котором начинает циркулировать наш токовый импульс. Этот процесс продолжается то тех пор, пока вся энергия этого импульса не будет израсходована, после чего колебания прекратятся (полностью затухнут).

Теперь, поняв причину возникновения колебаний, становятся очевидными и пути борьбы с ними:

  1. уменьшение начальной энергии импульса;
  2. уменьшение паразитной индуктивности контура;
  3. уменьшение паразитной ёмкости контура;
  4. 4) использование для ослабления колебаний специальной схемы, известной у буржуев как снаббер (по-нашему — демпфер).

Остановимся подробнее на каждом из этих вариантов:

1) Для уменьшения начальной энергии импульса можно использовать MOSFET-ы со встроенными диодами Шоттки вместо обычных диодов, поскольку у диодов Шоттки меньше обратный восстанавливающий ток. Меньше импульс тока — меньше начальная энергия паразитных колебаний.

2) Паразитная индуктивность контура определяется разводкой платы. Всё это довольно сложно, но один совет можно дать: силовые шины на плате должны быть как можно короче, шире и прямее.

Никогда не задумывались, почему схема DC-DC преобразователя, собранная радиолюбителем "на проводках" может оказаться неработоспособной, хотя та же схема, с теми же номиналами элементов, но собранная на печатной плате, может вполне прилично работать? Виной этому как раз может быть очень большая паразитная индуктивность спаянной "на проводках" схемы (последствия читай выше).

3) Основной частью паразитной ёмкости контура является ёмкость между стоком и истоком транзистора (выходная ёмкость — Coss). Ёмкость Coss определяется из документации на транзистор. В документации обычно приводятся графики зависимости этой ёмкости от напряжения между стоком и истоком. Так что качаете доку на транзисторы, которые предполагается использовать, и выбираете тот, у которого Coss минимальна.

4) Поскольку, в любом случае, невозможно полностью избавиться ни от паразитной ёмкости, ни от паразитной индуктивности (тем более, когда вы проектируете не просто отдельный блок питания, а блок питания в составе какой-либо платы, то чаще всего у вас нет возможности сделать оптимальную разводку), то может получиться так, что величина паразитных колебаний в сделанном вами девайсе абсолютно вас не устроит. В этом случае (когда все остальные пути исчерпаны) для ослабления колебаний можно использовать снаббер. Причём, могу сказать по собственному опыту, что правильно рассчитанный снаббер способен ослабить колебания довольно эффективно.

Простейший снаббер — это последовательно соединенные конденсатор и резистор. Расчёт такого снаббера заключается в определении номиналов конденсатора и резистора, а так же в определении мощности резистора. Как рассчитываются эти величины:

1) Номинал резистора снаббера рассчитывается исходя из того, что оптимальное сопротивление резистора должно быть равно характеристическому импедансу (сопротивлению) колебательного контура:

, где L и C — это соответственно паразитные индуктивность и ёмкость

Как было отмечено выше, паразитная ёмкость — это в основном ёмкость между стоком и истоком транзистора (выходная ёмкость Coss). Её величину можно определить из документации на транзистор. Но как найти величину паразитной индуктивности? Эта величина определяется расчётным путём по осциллограмме. Для этого измеряем осциллографом частоту паразитных колебаний и из соотношения:

f=1/(2*π*√ L*C ), находим паразитную индуктивность: L=1/(4*π 2 *f 2 *C)

2) Величина ёмкости снаббера обычно является компромиссным решением, поскольку, с одной стороны, чем больше ёмкость — тем лучше сглаживание (меньше число колебаний), с другой стороны, каждый цикл ёмкость перезаряжается и рассеивает через резистор часть полезной энергии, что сказывается на КПД (обычно, нормально рассчитанный снаббер снижает КПД очень незначительно, в пределах пары процентов).

Так вот, на практике величину этой ёмкости обычно определяют из условия, что постоянная времени снаббера должна быть в 3 и более раз больше периода паразитных колебаний:

Rsn*Csn=3*T=3/f, где T и f — это, соответственно, период и частота паразитных колебаний, отсюда Csn=3/(Rsn*f)

3) Мощность резистора оценивается по величине энергии, которую он каждый цикл должен рассеивать вследствие перезаряда конденсатора Csn:

PRsn=(1/2)*Csn*Uin 2 *fs, где Uin и fs — это, соответственно, входное напряжение преобразователя и частота, на которой он работает

В дополнение, хочется сказать, что располагать элементы снаббера рекомендуется как можно ближе к силовым ногам транзистора:


Суть вопроса:
Мечтаю собрать в свободное время Лабораторный блок питания (очень нужен чтобы экспериментировать ну или аккумуляторы заряжать например).
Из детства помню что деды говорили что самый чистый источник, который обладает LC фильтром.
Помня немного предыстории, знаю что раньше мотали здоровенные дросселя, так как их изготовить было проще и дешевле чем найти конденсаторы большой емкости.
Но Все же я жуть как захотел реализовать в своем самодельном блоке, подобие "П — образного" или "Г — образного" LC фильтра.

Трансформатор будет использоваться ТС-160-3, обмотки будут коммутироваться с двух-полярного(0-15В до 5А) до одно-полярно (0-15В макс. 10А или 0-30В макс. 5А).

Я так понимаю что через этот дроссель (?) будет течь ток до 10А и мощность дросселя будет до 160Ватт.
Будут применены конденсаторы 50В 10000мкФ (к50-18 отечественные).

Вопрос такой существует ли готовый такой дроссель, как он выглядит, или как должен выглядеть этот дроссель, или какие у него должны быть параметры?

>> Прошу обратить внимание что блок питания будет регулируемый, трансформатор на 50Гц соответственно на выходе полного диодного моста будет уже 100Гц, линейный и с защитой по току от перегрузки и короткого замыкания. LS- фильтр будет стоять сразу после диодного моста. Конденсаторы Советские К50-18 на 50 вольт 10 000 микрофарад. Сразу после фильтра будет стоять "двух линейный дроссель" если конечно будет необходим. Схема стабилизации по напряжению и току и прочая логика, будет стоят после фильтра

  • Вопрос задан более трёх лет назад
  • 4177 просмотров

грубо говоря у вас частота пульсации 100 герц(есть и побольше), посмотрите на дроссель в сварочном инверторе
он с полкулака , да там токи выше (в 30 раз) но и частота которую он фильтрует выше в 200-400 раз, то есть эффективности от дросселя на 100 герцах размером меньше чем кулак ожидать не стоит
в случае линейного преобразователя фильтры которые имеет смысл ставить
1) варистор на 600 вольт параллельно обмотке 220
2)термистор последовательно обмотке 220
3) керамические конденсаторы параллельно каждому диоду- при закрывании диод создаёт вч помеху которая будет усилена трансформатором и отправлена обратно в сеть 220 или(и) пойдёт дальше, а аллюминиевые электролиты большой ёмкости вообще не гасят вч помехи
4) чисто символически можно сделать какой-нибудь дроссель в 10 витков от вч помех идущих из сети 220 а перед ним такой же символический плёночный конденсатор на 1 мкф да гашения вч помех.
5) большие электролиты
6) не больше 1 мкф плёночные конденсаторы после линейного стабилизатора будут блокировать остатки пульсаций которые сделает стабилизатор сделает в процессе работы

Читайте также:  Как напечатать формат а3 на обычном принтере

ну и бонус отключение бп на 12 вольт в котором не предусмотрено дополнительных фильтров (1,2,3,4)от сети
получилось с 15го раза

Не совсем в дырочку но уделенное внимание впечатляет! Спасибо за старания!

    В общем то с кулак, то есть каждый дроссель будет не менее этого конденсатора а то и больше в два раза (конденсаторы отечественные)

Сдатся мне что я что то упустил из виду обратное ЭДС самого дросселя включенного последовательно, нужно ли будет ставить после дросселя еще один диод? или Вполне хватит до дросселя диодного моста?

Идея поставить фильтр высоких частот, у меня была, но для этого я планировал использовать переделанный (так как у меня нет земли в розетке) входной фильтр от блока питания компьютера, тот на 250 Вт. Спасибо что уточнили необходимость в нем так как из за отсутствия теории я предполагал что подобные помехи будут гаситься в трансформаторе.

Задумался насчет Варистора, он же не вечный? Значит нужно будет подумать над схемой ограничителя напряжения, так как иначе подобные броски убьют мой диодный мост на выходе трансформатора. Я помню что диоды лучше подбирать с запасом по напряжению в x10 раз и по току в x2 раза что скажете о КД2999В?

На счет термистора, честно говоря сомневаюсь, так как это более не вечный прибор, я так понимаю что его имеет смысл ставить в тех случаях когда защита срабатывает в КЗ тогда да он сработает, и не будет необходимости менять предохранитель, но просто ставить его как тока ограничитель навряд ли приемлемо, так как в таком режиме работы он будет более чем не долговечен.

Спасибо что напомнили про шунтирование диодов конденсаторами, как вследствие всплыл вопрос о таком же шунтировании реле коммутации обмоток, есть ли в этом необходимость, точнее имеет ли это смысл и возможные негативные последствия шунтирования (схема там переключение обмоток для добавки 7-ми вольтовой обмотки для каждого канала отдельно RL1, RL2, 3-5 реле для коммутации каналов каждый отдельно, последовательно или параллельно).

  • А чего это у вас за программка такая?
  • Сергей Кордубин:
    1) для 100 герц заметные влияния оказывают только очень большие дросселя, + надо учитывать насыщение сердечника в случае кз ( допустим происходик кз -> ток превышает расчётный -> сердечник уходит в насыщение -> индуктивность падает -> повышается частота пульсаций-> непредсказуемые последствия

    2) последовательно с дросселем нельзя ставить диод если току обратного эдс некуда уходить — он просто пробьёт диод , диодный мост нормально шунтирует дроссель открывась, избыток напряжения уходит на конденсатор.

    4)да варисторы не вечны, вместо них можно ставить TVS диоды они же супрессоры но сети редко проскакивают напряжения 600+ вольт( по сути они срабатывают когда мощности фильтра для гашения помехи не хватило) , а для защиты от перенапряжения лучше поставить в щиток реле напряжения- да дорого, но когда оно сработает, то сэкономит кучу денег или времени если удастся отсудить деньги
    5) термисторы бывают двух типов с положительным и отрицательным ТКС для мягкого старта бп надо использовать с отрицательным — в начале у него большое сопротивление но через пару секунд в районе долей ома на самом деле правильный подбор термистора это целая наука www.platan.ru/bek/05.pdf
    позисторы можно использовать как самовосстанавливающиеся предохранители по нормальному надо использовать сочетание того и другого, но так как лабораторный источник питания подразумевает частое кз, то защиту лучше организовать на реле или собрать ограничитель тока.

    6) вместо реле лучше использовать тиристоры — они после снятия управляющего напряжения и переходе через 0 — сильно уменьшает всякие левые выбросы и вч помехи, но сами к ним чувствительны — могут и открыться от вч помехи благо что сами потом и закроются при следующем 0 поэтому тиристоры для управления постоянным током не стоит использовать, если всётаки реле то для гашения помех создаваемых реле стоит использовать снабберы — конденсатор простейший снаббер

    7) цифровой осциллограф Hantek DSO5102P на этом скрине c ещё с ещё не тронутым Linux

    Василий:

      По п. 1 и п. 2 твоего комментария, Да что там не предсказуемые? Вполне предсказуемые, от насыщенного последовательно подключенного дросселя, получаем обратное ЭДС и ближайшая цепь которая может пробиться от x10-x100 напряжения пробивает, для этого логично было бы поставить, параллельно дросселю, два защитных диода подключенных встречно последовательно (он же зенер, он же стабилитрон и он же TVS-диод) или как я понял с твоей подсказки что вполне себе хорошо будет себя чувствовать там Варистор на напряжение 60+. Тогда все обратное ЭДС пройдет через этот шунт, хотя лучше все таки, цепь из двух последовательных встречно подсоединенных диодов, один TVS а второй который не будет пропускать нормальное напряжение через TVS диод. единственное что в этой затее не ясно до конца так это какая индуктивность должна быть у этого дросселя.

    По п. 3-му и 4-му, Про варисторы немного не понял, спасибо за уточнение, идея хорошая, действительно сэкономит мне денег.

    По п 5-му, подумал как будет эта снаберная цепь выглядеть (схема с релюхами), и получается что сильные помехи она будет гасить, но увеличивать небольшие помехи и уменьшит КПД трансформатора, думаю что проще и надежнее сделать переключение этих режимов отдельными кнопками, я и так планировал сделать переключение "два независимых канала", "один канал с параллельными вторичками" и "один с последовательными вторичками". И уже программно при необходимости добавлять обмотки. но теперь я вижу уже пять кнопок три кнопки коммутации каналов, и две кнопки добавочных обмоток. Т.к. все добро будет на МК то сам МК будет разрешать или запрещать ручное переключение исходя из условий но сам делать этого не будет.

    Читайте также:  Сайты похожие на друг вокруг

    А прога у тебя крутая =)

  • Может переселимся на форум например схем.нет и уже там будем дискутировать, или тебе тут удобно?
  • Василий: эм насчет KBPC5010 я хотел с умничать что заявлено что 50A, но на моей памяти они не выдерживали постоянные 15А, открыл даташит и увидел что 50А это для импульсного режима работы и пиковые на 8мили секунды, то есть для синусоиды это максимум 35А в продолжительном режиме работы летом это минус треть 23А. при том при работе на 50градусов 3А всего то. но это наверное справедливо (3А) при работе нон стоп без радиатора в среде не превышающий 50 градусов или я чет не понял?

    а КД2999В не подойдут? а если я между плюсом и минусом кину стабилитрон на пробой в их пиковые 100В?

    Сергей Кордубин:
    с насыщением дросселя немного не так — при насыщении его индуктивность резко падает, в первом приближении можно считать что при превышении некоторого тока дроссель исчезает из цепи, поэтому в разработках повышенной ответственности используют дроссели без сердечника.

    кстати стабилитрон и TVS это разные детали с общим принципом работыTVS не предназначен для постоянного прохождения тока через него, но должен моментально открываться, у стабилитрона не стоит задача моментального открытия, но стоит задача стабильного напряжения на переходе
    варистор же делается по другому принципу и он при срабатывании существенно сильнее изнашивается чем диоды

    с дросселями дело обстоит так — его можно считать источником тока , и чтобы не получить пары киловольт куда не следует, ток должен куда-то идти если дроссель с одной стороны выходит на диодный мост, а с другой на конденсатор большой ёмкости то дополнительных мер предпринимать не нужно, в случае обрыва цепи после фильтра в крайнем случае откроется диодный мост и лишний ток уйдёт на конденсатор 10к мкФ зарядив его на несколько вольт ,однозначно "проглотит" выброс дросселя размером с кулак энергия дросселя (L*I^2)/2 энергия конденсатора (С*U^2)/2 если приравнять это дело получим повышение напряжения U=I*(L*C)^0.5 тоесть чтобы напряжение скакануло до с 30 вольт до 50 при токе 10 ампер на конденсатор 10к мкФ надо найти L= 400 генри
    как говорят сейчас в интернетах "это почти 2 километра провода, Карл!" размер этой бобины представить не сложно

    для гашения помех при работе реле надо знать коммутируемый ток и индуктивность цепи индуктивность цепи можно прикинуть по формулам для прямого провода* кофициент испуга, выше простой пример расчёта выброса напряжения, так как реле коммутирует переменный ток то увлекаться слишком большими конденсаторами не стоит -ток побежит через них

    Василий: ,
    Понятно, от здоровенных дросселей отказываемся.
    Вычитал на одном из форумАх, что высокая частота в цепи, насилует электролиты, и что для импульсников там какие то особые нужны по идее, советуют ставить предварительный фильтр высоких частот. Я вот и немного призадумался, может имеет смысл, поставить на выходе после релюх перед конденсатором такойже LC фильтр как и на входе в трансформатор на первичку? Тоесть подербанить парочку одинаковых приборов на нагрузку свыше 160 Вт и поставить двух линейные дросселя с керамикой от туда, после конденсаторов взять просто дросселя на выходе импульсника из под сгоревших АТХ блоков, как считаешь лучше будет?

    Я взял твои формулы и посчитал,
    при условии что напряжение 31,5В а сила тока 5А а емкость конденсатора 10кмкФ = 10мФ = 0,01Ф
    энергия запасенная в конденсаторе 4,96125
    Индуктивность катушки 0,3969 генри = 396,9мГ = 396900мкГ

    в общем после не сложных онлайн калькуляторов я высчитал вес провода длиною 1200м или 1,2км это около 60кг меди . я не говорю про цену, я просто размеры себе никак не прикину, это гдето как бутылка 19 литров разрезаная пополам минимум только диаметр у которой больше полу метра, вот такой вот тор получиться. я уверен что любые помехи сожрет, а насыщение катухи длина провода, вобщем если ради поржать, то эта бабинища, будет неплохим регулятором напряжения =) снял пару десятков витков, поднял напряжение, . короче говоря эту катуху можно будет прям в сеть через диод врубать, и на выходе получать почти линейное напряжение вольт так в 100-150 гыыы.

    Все на том и порешили с дроселями, ставим до трансформатора варистор, термистор с отрицательным ТКС, потом переделанный входной фильт высоких частот от компа, после релюх, ставим П образный фильтр высоких частот на керамических или же пленочных конденсаторах, где хз сколько витков каким сечением и на какой сердечник, после стоит Электролит 10к мкФ который гасит низкие частоты, после него грязь подбирает блок стабилизации по току или напряжению с защитой по току, на выходе блока ставим прям перед самими разьемами и после выводов на вольт метр, двух линейный дросель, и это пожалуй наилучший выход. Остался вопрос как расчитать этот самый высокачастотный фильтр после релюх.

    да электролиты очень не любят вч особенно старые советские для этого их шунтируют плёночными и керамическими конденсаторами
    вот тут есть расчёт фильтра и много чего полезного
    https://geektimes.ru/post/269650/
    проще взять тиристоры=) чем на каждую релюху лепить снаббер они при при комутации переменного тока не создают помех

    вообще при 100+ ваттах имеет смысл подумать над импульсным бп.

    6A). Сам не большой спец, погуглив простого решения не нашел. Твоя ветка как раз в тему, но концовки нет.
    Напиши, пожалуйста, чем у тебя закончилось.

    Ссылка на основную публикацию
    Сколько рублей получают ютуберы
    Видеохостинг YouTube — не только развлекательная площадка, но и хороший источник дохода. Тысячи пользователей выкладывают ролики, пытаясь привлечь внимание аудитории....
    Самый дорогой самсунг 2018
    Samsung / Самсунг - южнокорейская компания, ведущий производитель смартфонов в мире. В первом квартале 2018 года доля Самсунг на мировом...
    Самый лучший smart tv
    Ежегодные обновления телевизионных технологий делают телевизоры уже больше, чем обычным экраном для демонстрации каналов. Растет популярность функции Smart TV, которая...
    Сколько света мотает компьютер
    Выбирая комплектующие для персонального компьютера (ПК) обычно обращают внимание на производительность и объем памяти, порой забывая о том, сколько же...
    Adblock detector