Сонар что это такое

Сонар что это такое

Сонары

С онар — средство звукового обнаружения подводных объектов с помощью акустического излучения. Слово «сонар» происходит от англ. «sound navigation and ranging».

Принцип действия

По принципу действия сонары делятся на активный и пассивный.

  • Пассивные — позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование)
  • Активные — использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону сонаром

Рис. 1. Принцип действия сонара

Электрический импульс от передатчика превращается преобразователем в звуковую волну, которая распространяется в водной среде. Когда звуковая волна встречает на своем пути какое-либо препятствие, то часть ее отражается и возвращается обратно к преобразователю. Преобразователь превращает отраженную звуковую волну в электрический импульс, который усиливается приемником и выводится на дисплей. Так как скорость звука в воде постоянна (примерно 1500 м/с), то, измеряя время между отправкой сигнала и возвращением отраженного эха, можно определить расстояние до найденного объекта.

Природа звука под водой

Вода, в отличие от воздуха, имеет свойство распространять звуковые колебания на большие расстояния, в этом причина использования звуковых волн под водой. Электромагнитные волны не используются, так как они распространяются лишь на небольшие расстояния.

На распространение звуковых волн в водной среде влияют факторы:

  • частота и амплитуда звуковой волны
  • температура
  • соленость
  • глубина воды
  • расстояние распространения звука
  • другие факторы — неоднородности в воде, участки с турбулентностью, состояние поверхности воды, тип дна

Средняя скорость звука в воде – 1480 м/с, граничные скорости: от 1450 до 1540 м/с.

Обработка сигналов

  • 1. Генератора синусоидальных импульсов. Генератор состоит из двух компонентов: усилитель, выход которого подключен к собственному входу («положительная обратная связь»), из-за чего происходят колебательные отклонения сигнала; электрический фильтр, внутри которого находятся катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты подаваемого сигнала. На определенных частотах сопротивление возрастает, что препятствует прохождению сигнала
  • 2. Группа фильтров. Они занимаются амплитудным и фазовым затенением, формированием направления и формы пучка
  • 3. Сигнал подается на усилитель и на антенну, где он преобразуется в звуковые колебания. Излучаемый звуковой сигнал называется импульсом. Импульс движется к исследуемому объекту, отражается от него и возвращается назад к сонару. Сонар в это время находится в пассивном режиме и ожидает возвращения импульса, который снова переводится в электрический сигнал. Длительность импульса должна быть меньше времени, за которое импульс движется от сонара к цели и обратно, иначе на приемнике результат будет суммироваться с исходящими волнами

Еще раз рассмотрим фильтры и процессы, которые сигнал проходит после до того, как будет излучен антенной.

Квадратурная модуляция

Чем выше частота звука (соответственно, меньше длина волны), тем выше разрешающая способность сонара (более мелкие элементы могут быть обнаружены). С другой стороны, высокая частота несет меньше энергии в каждом колебании, поэтому оно подвергается большему воздействию шума, и отношение сигнал-шум уменьшается.

Рассмотрим одно отдельное колебание. Оно несет в себе максимум и минимум своей амплитуды. Информацию при этом передает максимум амплитуды, а минимум фактически не используется. Если дублировать исследуемый сигнал, сместить его по фазе на 90 градусов и сравнить с исходным, то максимум второго сигнала окажется на одном уровне с минимумом первого. Если передавать одновременно в одном канале эти два сигнала, их частоты останутся прежними, однако информационная насыщенность возрастет в 2 раза, так как передающий информацию максимум амплитуды будет встречаться в 2 раза чаще. Такая одновременная передача двух сигналов называется квадратурной модуляцией.

Эффект Доплера

Эффект изменения частоты звука при движении называется эффектом Доплера. Эффект Доплера для электромагнитных волн существенно отличается от наблюдаемого в воздухе, так как для электромагнитных волн отсутствует какая-либо среда-посредник, являющаяся третьей стороной в контакте приемника и передатчика волны.

Согласующий фильтр

Принятый сигнал сравнивается с исходным. В согласующем фильтре сигнал не только делится на фрагменты и сравнивается, но и суммируется с исходным сигналом, что позволяет уменьшить количество шумов, которые испытал на себе сигнал во время движения к цели и обратно. Здесь же первично оцениваются искажения сигнала и производится определение причины искажений.

Быстрое преобразование Фурье

В синусоиде, которая представляет сигнал, информация повторяется много раз. После преобразования Фурье эти повторения информации исчезают. Быстрое преобразование Фурье позволяет выполнять преобразование с меньшим количеством вычислений.

Что происходит с сигналом по прибытии на антенну:

  • 1. Предварительный усилитель и фильтр полосы частот
  • 2. Автоматическая регулировка усиления
  • 3. Квадратурная демодуляция
  • 4. Фильтр сглаживания и преобразование в цифровой вид
  • 5. Переход в согласующий фильтр (компрессия импульса, описанные выше действия; компенсация движения, микро-навигация, автофокус, искусственные методы повышения разрешения) 6. Обработка изображения (формирование частей изображения, объединение их, программируемые обнаружение и классификация целей)
  • 7. Вывод на экран монитора

Характеристики сонаров

Общие требования к системе:

Передатчик большой мощности

Большая мощность передатчика гарантирует возможность получения четкого эхосигнала даже с больших глубин и при плохом состоянии воды и позволяет рассмотреть мелкие детали подводного мира.

Эффективный преобразователь

Прибор должен быть способен не только проводить сигналы высокой мощности, поступающие от передатчика, он должен преобразовывать электрическую волну в звуковую с минимальными потерями. Преобразователь должен распознавать и преобразовывать самое слабое эхо.

Чувствительный приемник

Приемник работает с сигналами в широком диапазоне. Он должен подавлять сигналы большой амплитуды во время работы передатчика и усиливать слабые электрические сигналы, которые возникают, когда возвращающийся эхосигнал достигает преобразователя. Приемник также должен обеспечивать четкую видимость на экране близкорасположенных целей, разделяя для этого электрические импульсы.

Экран с высоким разрешением и контрастностью

Экран должен иметь высокое разрешение, а также обладать высокой контрастностью. Это позволяет разглядеть на экране дугообразные эхосигналы и различные мелкие объекты, расположенные под водой.

Читайте также:  Как выделить проценты из суммы

Все части системы должны быть спроектированы для совместной работы при любых погодных условиях и при любых температурах.

Рабочая частота сонаров

Для большинства случаев как в пресной так и соленой воде частота 192 кГц дает лучшие результаты. На этой частоте лучше видны мелкие детали, с ней сонар лучше работает на мелководье и в движении, на экране получается меньше "шума" и нежелательных эхосигналов. На частоте 192 кГц достигается лучшее разрешение.

Но в определенных ситуациях лучше использовать частоту 50 кГц. Так, например, излучение сонара, работающего на частоте 50 кГц (при тех же условиях и при той же мощности), способно проникать на большую глубину, чем излучение на частоте 192кГц. Это связано со способностью воды поглощать звуковую энергию, имеющую разные частоты. Коэффициент поглощения для высоких частот больше, чем для низких. Поэтому частота 50 кГц используется в основном на больших глубинах. Угол расходимости звуковых волн при использовании частоты 50 кГц больше, чем у излучателей, работающих на частоте 192 кГц. Широкий угол обзора полезен при движении судна на мелководье, имеющем большое количество подводных скал и рифов.

Таб. 1 Разница между частотами 192 кГц и 50 кГц

192 kHz 50 kHz
мелководье большие глубины
узкий угол излучения узкий угол излучения
лучшее разрешение и разделение объектов меньшее разрешение
меньшая подверженность шумам больше шумовых помех

Преобразователи

Преобразователь является «антенной» сонара. Звуковые волны уходят от преобразователя и, распространяясь в воде, достигают какого-либо препятствия и затем, отражаясь, возвращаются обратно к преобразователю. Преобразователь выполняет две функции: преобразование электрической энергии в звуковую (излучатель) и обратно — звуковой в электрическую (приемник). Когда отраженная звуковая волна попадает на преобразователь, то он превращает ее в электрический сигнал, который поступает в приемно-усилительный блок сонара.

Каждый преобразователь может работать только на одной определенной частоте и эта частота должна совпадать с частотой, на которой работают передатчик и приемник сонара. Кроме того, преобразователь должен быть рассчитан на работу с той мощностью, которая развивается передатчиком, и при этом он должен преобразовывать в звуковую энергию максимальную часть поступающей в него электрической энергии. В то же время преобразователь должен быть достаточно чувствительным, чтобы регистрировать очень слабые возвращающиеся эхосигналы. Все это должно иметь место для одной определенной частоты (192 или 50кГц), в то время как эхосигналы других частот должны отфильтровываться.

Угол излучения преобразователя

Звуковые волны распространяются от преобразователя (излучателя-приемника) в определенном направлении. Когда звуковой импульс удаляется от преобразователя, то, чем больше становится расстояние, тем большую площадь охватывает этот импульс. Если изобразить распространение звуковых волн, то получится конус, вследствие чего появился термин "угол конуса", характеризующий расходимость звукового излучения. По оси конуса мощность звуковых волн максимальна, а по мере удаления от оси она постепенно уменьшается до нуля.

Рис. 2. Сигнал сонара, посланный с лодки

Чтобы определить значение величины угла конуса для определенного преобразователя, необходимо сначала измерить мощность излучения по оси конуса, а затем сравнить его со значениями, полученными в разных точках при удалении от оси. Далее нужно найти ту точку, в которой мощность излучения будет равна половине максимального значения (-3 db). Угол между линией, проведенной из вершины конуса через точку половинного значения мощности с одной стороны от оси и аналогичной линией с другой стороны оси, и будет искомым углом конуса.

Преобразователи с рабочей частотой 192 кГц выпускаются как с узким углом конуса, так и с широким. Преобразователи с широким углом конуса следует применять в большинстве случаев на пресноводных водоемах. В то время как преобразователи с узким углом следует применять во всех случаях рыбалки на море. Излучатели с рабочей частотой 50 кГц обычно имеют углы конуса в диапазоне от 30 до 45 градусов.

Угол эффективного конуса — это область внутри конуса излучения, эхосигналы из которой видны на экране эхолота. Увеличение уровня чувствительности увеличивает эффективный угол, позволяя видеть объекты, которые находятся гораздо дальше по сторонам.

Состояние воды и дна

На работу сонара оказывает влияние то, в какой воде он используется. В чистой пресной воде звуковые волны распространяются хорошо, а вот в соленой воде звук поглощается сильнее, к тому же он рассеивается на многочисленных взвешенных в морской воде частицах. Рассеиванию сигналов сонара способствуют содержащиеся в морской воде микроорганизмы, такие как мелкие водоросли и планктон. В пресной воде тоже есть течения и микроорганизмы, но их влияние на работу сонара значительно меньше.

Грязь, песок и водная растительность на дне сильно поглощают сигналы сонара, ослабляя тем самым отраженный сигнал, который формирует на экране линию дна. Камни, сланцы, кораллы и другие твердые объекты хорошо отражают сигналы сонара. Это различие заметно на экране сонара: мягкое дно, например, илистое, дает на экране тонкую линию. Твердое каменистое дно дает на экране широкую линию.

Применение сонара

Сонар имеет множество применений. Подводные лодки используют сонар для обнаружения других судов. Технологию применяют для измерения глубин (эхолот). Эхолот измеряет время, необходимое для звукового импульса, чтобы достичь дна водоема и вернуться обратно. Рыболовные суда используют эхолот или гидролокатор для поиска стай рыб.

Рис. 3. Внешний вид эхолота

Океанографы используют сонар, чтобы отобразить контуры дна водоема.

Сонары также используются при поиске нефти на суше. Это помогает определить места бурения, которые, скорее всего, содержат природные ресурсы (сейсморазведка).

Читайте также:  Как перекачать фотографии с телефона на ноутбук

В медицине используется особый вид сонара — УЗИ (ультразвуковое исследование) или эхоскопия. Звуковые волны разной частоты производят различное эхо при отражении от разных органов тела. Врачи научились использовать эти сигналы, чтобы определять заболевания или контролировать развитие ребенка в утробе матери.

Звуковые волны очень высокой частоты используют в медицине и промышленности для чистки поверхностей от мельчайших инородных частиц.

Если открыть обычные словари, то увидим, что сонар это аббревиатура и состоит из таких английских слов, как «SOund Navigation And Ranging». Если обратиться к переводчику, то дословный перевод будет таким «Звук Навигации И Начиная». Но смысловой перевод будет не много другим, и обратимся к Википедии: «сонар – это средство обнаружения предметов или объектов в воде при воздействии на них акустического излучения». Т.е. сонар – это то же самое, что и куда более известное слово ГИДРОЛОКАТОР. С одним значением слова сонар понятно.

Сонар в музыке. В музыке существует такая программа, как Cakewalk SONAR. Предназначена она для записи, редактирования видео или музыки. Почему в названии использовалось слово сонар, да потому что создатели программы хотели показать, что работа будет проводиться со звуком. И кстати здесь слово SONAR, используемо то же, как аббревиатура вышеуказанная.

Сонар в медицине. В медицине существует уникальный прибор Sonar vision. Функция этого прибора заключается в том, что он преобразует изображения в звук. И можно сделать вывод, что предназначен данный прибор для слепых.

Сонары в рыбалке. Каждый рыбак наверняка знает, что такое сонар. Ведь сонар (эхолот) на рыбалке используется для определения рыбы в водоеме. Сущность такая же, как и у гидролокатора.

Из приведенных примеров можно сделать вывод, что слово «сонар — sonar» — это аббревиатура нескольких слов, но вошло в лексикон, как самостоятельное слово и означает обнаружение предметов с помощью звуковых излучений. И в настоящее время большое количество производителей техники или приборов, а также программ используют слово «сонар» в названии своего продукта. К примеру: в данное время есть автомобильные шины Sonar. Но не понятно почему здесь использовано это слово. Если есть предположения, то напишите в комментариях.

Иногда, когда соблюдены определенные условия, Вы можете услышать собственное эхо. Если Вы крикните «Привет!», звук может отразиться от большого объекта, и Вы услышите собственный голос. Это и называется эхо. Радар и сонар – это электронные устройства, которые используют принцип эхо для обнаружения и локализации объекта.

Оба устройства — и радар, и сонар — определяют объект по эхо-сигналу, который отразился от объекта. Радар использует радиоволны, которые являются типом электромагнитной энергии. Сонар использует принцип эхо, посылая звуковые волны под воду или сквозь человеческое тело. Звуковые волны — это тип акустической энергии. Из-за различия типов энергии, используемых в радаре и сонаре, каждый из них имеет своё собственное применение.

Что такое радар?

Слово «Радар» («Radar») было образовано от английского словосочетания «radio detection and ranging»(«радиообнаружение и дальность»). Радиоволны представляют собой тип электромагнитного излучения (микроволновые печи, рентгеновские лучи и световые волны другого типа). Это основа данной технологии. Дальность означает измерение расстояния до цели от РЛС (устройство, которое отправляет радиосигнал и принимает обратно его отражение).

Радар использует радиоволны. Похожая система называется «оптический радар» или «лидар» («lidar» — от англ. «light detection and ranging» — «световое обнаружение и дальность»), которая основывается на том же принципе, что и радар, но использует световые волны.

Как радар работает

РЛС (также называемые радиолокационными станциями) бывают разных размеров, в зависимости от тех целей, где их используют. Но все они состоят из четырех основных частей: передатчика, антенны, приемника и дисплея. Передатчик испускает радиоволны. Когда радиоволна доходит до объекта, например самолета, она отражается обратно к станции. Антенна обнаруживает отраженный сигнал и отправляет на приемник, который его увеличивает и усиливает. Затем, сигнал отправляется на дисплей как изображение.

Выглядит изображение, обычно, как схематичная карта типа «вид сверху». На дисплее отображаются яркие пятна, назовем их всплески. Всплески показывают участки суши, а также различные объекты — такие как самолеты, корабли и т.д. Оператор может выбрать эти объекты, так как они находятся в движении, тогда как земля неподвижна.

Основной тип радара — импульсный радар. Он отправляет радиоволны короткими очередями или импульсами. Расстояние до цели определяется временем, за которое сигнал доходит до цели и возвращается обратно. Скорость радиосигнала сравнима со скоростью света и составляет 300 000 км/с. Соответственно, если сигнал возвращается за 1/1000 секунды, проходит расстояние в 300 км, то цель должна быть на половине пройденного расстояния, т.е. в 150 км удаленности.

Импульсная передача позволяет определить расстояние более точно. Почему это так? Представьте себе, как Вы кричите, чтобы услышать эхо. Если Вы кричите продолжительное время, то первые слова вернутся прежде, чем Вы закончите, и Вы не сможете услышать все предложение. Но если Вы крикните что-то короткое, то без проблем распознаете свое эхо.

Расположение цели по отношению к РЛС определяется немного иначе. Радарная антенна отправляет импульсы узким лучом, примерно как светит фонарь. Антенна и, соответственно, луч вращается медленно и проходит через все возможные препятствия в поисках целей. Сигнал отражается от корабля или какой-либо другой цели, только если луч задел её. Возвращенный сигнал усиливается приемником и отображается на мониторе, где показывается расстояние и направление до цели.

Применение радара

Радар применяется как в военных, так и в гражданских целях. Наиболее распространенное применение в гражданских целях — это помощь в навигации для морских и воздушных судов. РЛС, установленные на судах или в аэропорту, собирают информацию о других объектах, чтобы предотвратить возможные столкновения. На море собирается информация о буях, скалах и т.д. В воздухе РЛС помогают заходить на посадку воздушным судам, в условиях плохой видимости или неисправности.

Читайте также:  Клавиатура a4 b130 черный

Также радары используются в метеорологии, при прогнозировании погодных условий. Синоптики, как правило, используют их в сочетании с лидаром (оптическим радаром) для изучения штормов, ураганов и других погодных катаклизмов. Доплеровский радар основывается на принципе эффекта Доплера – т. е. изменение частоты и длины волны для наблюдателя (приемника) из-за движения источника излучения или наблюдателя (приемника). Анализируя изменения частоты отраженных радиоволн, доплеровский радар может отслеживать движение штормов и развитие торнадо.

Ученые используют радары, чтобы отслеживать миграцию птиц и насекомых, определять расстояние до планет. Потому как он может показать в каком направлении и как быстро движется объект, радар используется полицией для определения нарушений скоростного режима. Подобные технологии используются в спорте, например в теннисе, чтобы определить скорость подачи. Радар используют спецслужбы, чтобы сканировать объекты. В военных целях радары, в большей степени, применяют в качестве поиска целей и управления огнем.

История радара

История радарной технологии началась с экспериментов с использованием радиоволн немецким физиком Генрихом Герцом в 1887 году. Он обнаружил, что волны могут проходить через одни объекты, но отражаться другими. В 1900 году Никола Тесла заметил, что крупные объекты могут отражать достаточно сильные сигналы. Он понял, что волны были отраженными радиосигналами, и предсказал, что они могут быть использованы для поиска положения и направления судов в открытом море.

Впервые импульсный радар был представлен в США в 1925 году. В 1935 году радар был запатентован в британском патентном бюро как результат исследований во главе с шотландским физиком Робертом Александром Уотсон-Уоттом. Этот запатентованный радар был применен в радарных системах, которые оказались эффективны против немецкой авиации во время воздушных налетов на Великобританию, в период Второй мировой войны.(1939-1945 г.г.) Термин «радар» был впервые использован учеными ВВС США во время этой войны.

Прогресс в сфере радарных технологий продолжается до сих пор, усилия направлены на улучшение качества изображения, точности размера и снижения стоимости.

Что такое сонар?

Слово «сонар» происходит от англ. «sound navigation and ranging». Сонар может обнаруживать и определять местоположение объектов в толще воды при помощи эхо, аналогично дельфинам и другим морским животным, которые используют принцип эхолокации.

Как сонар работает

Есть два типа сонара: активный и пассивный. Активный отправляет импульсы и затем принимает отраженный сигнал эхо. Пассивный принимает сигнал, без отправки собственного. В активных гидроакустических системах звуковые сигналы намного мощнее, чем обычные звуки. Каждый импульс длится доли секунды.

Некоторые сонары излучают звуки, которые Вы можете услышать. Другие сигналы настолько высоки, что человеческое ухо не в силах их воспринять. Такие сигналы называются ультразвуковыми волнами (за пределами звука). У сонара имеется собственный приемник, который способен принять возвращенный эхо-сигнал. Положение объектов под водой можно определить по разнице между отправкой и приемом звукового сигнала.

Применение сонара

Сонар имеет множество применений. Подводные лодки используют сонар для обнаружения других судов. Технологию применяют для измерения глубин (эхолот). Эхолот измеряет время, необходимое для звукового импульса, чтобы достичь дна водоема и вернуться обратно. Рыболовные суда используют эхолот или гидролокатор для поиска стай рыб.

Океанографы используют сонар, чтобы отобразить контуры дна водоема. Звуковые сигналы могут пробивать толщу дна сквозь ил и песок и отрисовать слой породы под ними. Сигнал затем возвращается, давая расстояние до твердой поверхности.

Тот же принцип используется при поиске нефти на суше. Сонар отправляет импульс сквозь землю, импульс отражается с различной частотой от разных слоев почвы, и геологи могут определить какие виды грунта и пород присутствуют в почве. Это помогает определить места бурения, которые, скорее всего, содержат природные ресурсы. Это называется сейсморазведка.

Особый вид сонара используется в медицине и называется УЗИ (ультразвуковое исследование) или эхоскопия. Звуковые волны разной частоты производят различное эхо при отражении от разных органов тела. Врачи научились использовать эти сигналы, чтобы определять заболевания или контролировать развитие ребенка в утробе матери.

Звуковые волны очень высокой частоты используют в медицине и промышленности для чистки поверхностей от мельчайших инородных частиц.

История сонара

Сонар изобрела природа, задолго до того, как об этом задумался человек. Например, летучие мыши летают в темноте. Обходя препятствия и находя добычу при помощи ультразвуковых волн, которые человек услышать не в состоянии.

В 1906 году, американский военно-морской архитектор Льюис Никсон изобрел первый сонар для поиска айсбергов. Во время Второй мировой войны интерес к этой технологии возрос, т.к. возникла необходимость в обнаружении подводных лодок противника. В 1915 году такую первую действующую модель изобрел французский физик Поль Ланжевен. Первые приборы могли только слушать сигналы, но не могли излучать. Но уже к 1918 году Великобритания и Соединенные Штаты произвели образцы, которые могли отправлять сигнал и получать его обратно. Так же, как и с радарными технологиями, технологии сонаров постоянно совершенствуются и по сей день. Например, в 2000-х годах ВМС США ввели в оборот сонары, которые чистили военные мины.

Цены на сайте могут быть изменены без предварительного уведомления в связи c колебанием курса валют.
Уточняйте актуальные цены перед оформлением заказа.

Ссылка на основную публикацию
Сколько рублей получают ютуберы
Видеохостинг YouTube — не только развлекательная площадка, но и хороший источник дохода. Тысячи пользователей выкладывают ролики, пытаясь привлечь внимание аудитории....
Самый дорогой самсунг 2018
Samsung / Самсунг - южнокорейская компания, ведущий производитель смартфонов в мире. В первом квартале 2018 года доля Самсунг на мировом...
Самый лучший smart tv
Ежегодные обновления телевизионных технологий делают телевизоры уже больше, чем обычным экраном для демонстрации каналов. Растет популярность функции Smart TV, которая...
Сколько света мотает компьютер
Выбирая комплектующие для персонального компьютера (ПК) обычно обращают внимание на производительность и объем памяти, порой забывая о том, сколько же...
Adblock detector