Сортировка вставками c код

Сортировка вставками c код

Проходимся по всем элементам и вставляем каждый текущий элемент на свое место в уже отсортированную последовательность предыдущих просмотренных элементов. В самом начале считаем первый элемент уже отсортированной последовательностью и далее проходимся по всем остальным элементам.

В результате получим:

Подробно:

По книге Джона Бентли:
"Жемчужины программирования"

". Большинство картежников, сами того не сознавая, пользуются именно таким методом сортировки для упорядочения пришедших им карт. Когда игрок получает очередную карту, все предыдущие уже отсортированы, поэтому он просто вставляет ее в нужное место. Для сортировки массива х[n] в порядке возрастания начинать следует с первого элемента, считая его отсортированной подпоследователь­ностью х[0..0]. Затем нужно вставлять элементы х[1], . х[n-1] в правильные позиции, как это делается в приведенном ниже псевдокоде:

Последовательность сортировки массива из 4-х элементов иллюстрируется ниже. Символ "|" — показывает текущее значение переменной i; елементы слева от этого символа уже отсортированы, справа — нет.

3 | 1 4 2
1 3 | 4 2
1 3 4 | 2
1 2 3 4 |

Вставка элемента в нужную позицию производится циклом, в котором элементы перебираются справа налево, а в переменной j хранится индекс очередного вставляемого элемента. В цикле текущий элемент переставляется местами с предыдущим, если этот предыдущий элемент существует (то есть j>0) и текущий элемент еще не установлен в нужное положение (он и предыдущий элементы находятся в неправильном порядке). Итак, получившаяся программа сортировки примет вид:

В тех редких случаях, когда мне нужно написать свою собственную сортировку, я начинаю именно с этой функции, потому что она очень проста — всего три очевидные строки.

Программисты, стремящиеся к оптимизации, могут счесть нерациональным вызов функции swap из тела внутреннего цикла. Программу можно ускорить, раскрыв функцию явно, хотя многие оптимизирующие компиляторы способны делать это за нас. Заменим вызов функции нижеследующим кодом, в котором переменная t используется для обмена x[j] и x[j-l]:

t = x[j] x[j] = x[j-1] x[j-1] = t

На моем компьютере вторая версия сортировки работает примерно в три раза быстрее, чем первая.

После этого улучшения появляется возможность сделать следующий шаг. Поскольку переменной t несколько раз присваивается одно и то же значение (исходно находящееся в x[i]), мы можем вынести присваивания, относящиеся к этой переменной, за рамки внутреннего цикла, а также изменить вид сравнения, что даст третью версию сортировки вставкой:

Читайте также:  Html код телефона на сайте

Эта программа сдвигает элементы вправо до тех пор, пока они превосходят значение t, а потом ставит t в правильную позицию. Эта функция из пяти строк чуть сложнее своих предшественников, но на моем компьютере она работает примерно на 15% быстрее, чем вторая версия той же сортировки.

Для случайного расположения элементов во входном массиве, как и в худшем случае (обратный порядок сортировки), время выполнения сортировки вставкой пропорционально O(n 2 ). Таблица 11.1 содержит данные о времени выполнения трех программ, когда на вход подается n случайных целых чисел:

Третьей программе требуется несколько миллисекунд для сортировки n = 1000 целых чисел, треть секунды на n = 10 000 целых, и почти час на сортировку миллиона чисел. Скоро мы встретимся с программой, сортирующей миллион чисел меньше, чем за секунду. Если входной массив уже почти отсортирован, сортировка вставкой работает гораздо быстрее, поскольку все элементы сдвигаются лишь на небольшое расстояние. Алгоритм в разделе 11.3 данной главы(прим. ред-ра: т.е. алгоритм #2 задачи улучшение быстрой сортировки) основан именно на этом свойстве.
. "

Еще одним алгоритмом, разработанным для упорядочивания массивов, является алгоритм Сортировка вставками (Insertion Sort) . Этот алгоритм (как и другие, рассматриваемые на нашем сайте) достаточно прост. Он состоит из двух циклов (один вложен в другой). Первый цикл производит проход по массиву, а второй – перемещение обрабатываемых элементов. Давайте сразу посмотрим, как может выглядеть код такой сортировки, а уже ниже разберем, как он работает.

Алгоритм Сортировка вставками можно описать следующими позициями:

  1. Запомнить во временную переменную ( buff в примере) значение текущего элемента массива;
  2. Пока элементы слева от запомненного значения больше чем запомненное – перемещаем их на позицию вправо. Получается, что предыдущий элемент займет ячейку запомненного. А тот, что стоит перед предыдущим – переместится в свою очередь на место предыдущего. И так элементы будут двигаться друг за дружкой.
  3. Движение элементов заканчивается, если очередной элемент, который нужно сдвинуть, оказывается по значению меньше, чем тот, что запомнили во временную переменную в начале цикла.
  4. Цикл берет следующий элемент, и опять сдвигает все, которые расположены перед ним и большие по значению.
Читайте также:  Ровер в геодезии это

Покажем визуально перемещение значения в массиве из семи элементов во время работы Сортировки вставками :

На первой итерации в переменную-буфер запишется значение из ячейки с индексом 1 и цикл будет проверять этот элемент. Там у нас находится число 2. Оно больше значения, которое записано в нулевой ячейке, поэтому перемещений не будет. Далее в переменную-буфер запишется значение из ячейки с индексом 2 и снова пойдет сравнение со значениями слева и т.д. Только на четвертой итерации внешнего цикла начнется перезапись значений. Тройка сначала поменяется местами с пятеркой, а затем с четверкой.

Таким образом, в процессе Сортировки вставками элемент записанный в buff “просеивается” к началу массива. А в случаях, когда будет найден элемент со значением меньше чем buff или будет достигнуто начало последовательности – просеивание останавливается.

Хорошая визуальная иллюстрация алгоритма Сортировка вставками есть на википедии:

Затраты времени на работу данного алгоритма полностью зависят от начальных данных: количества элементов в массиве и его изначальной упорядоченности. Это понятно, что чем больше массив – тем больше времени надо на его обработку. Также больше времени потребуется на сортировку массива в котором значения абсолютно не упорядочены.

Алгоритм Сортировка вставками хорош для небольших массивов (до нескольких десятков элементов). Еще эффективнее работает, если данные такого массива ранее были частично отсортированы. Если в массив будут добавляться новые данные (новые элементы), алгоритм сможет их сортировать по мере их добавления (в отличии от сортировки пузырьком и сортировки выбором). Эффективность алгоритма значительно возрастет, если добавить в код алгоритм бинарного поиска.

Предлагаем также посмотреть короткий видоурок по информатике с разбором алгоритма Сортировка вставками :

Сортировка вставками – простой алгоритм сортировки, преимущественно использующийся в учебном программировании. К положительной стороне метода относится простота реализации, а также его эффективность на частично упорядоченных последовательностях, и/или состоящих из небольшого числа элементов. Тем не менее, высокая вычислительная сложность не позволяет рекомендовать алгоритм в повсеместном использовании.

Читайте также:  Левый и правый бинарный поиск

Рассмотрим алгоритм сортировки вставками на примере колоды игральных карт. Процесс их упорядочивания по возрастанию (в колоде карты расположены в случайном порядке) будет следующим. Обратим внимание на вторую карту, если ее значение меньше первой, то меняем эти карты местами, в противном случае карты сохраняют свои позиции, и алгоритм переходит к шагу 2. На 2-ом шаге смотрим на третью карту, здесь возможны четыре случая отношения значений карт:

  1. первая и вторая карта меньше третьей;
  2. первая и вторая карта больше третьей;
  3. первая карта уступает значением третьей, а вторая превосходит ее;
  4. первая карта превосходит значением третью карту, а вторая уступает ей.

В первом случае не происходит никаких перестановок. Во втором – вторая карта смещается на место третьей, первая на место второй, а третья карта занимает позицию первой. В предпоследнем случае первая карта остается на своем месте, в то время как вторая и третья меняются местами. Ну и наконец, последний случай требует рокировки лишь первой и третьей карт. Все последующие шаги полностью аналогичны расписанным выше.

Рассмотрим на примере числовой последовательности процесс сортировки методом вставок. Клетка, выделенная темно-серым цветом – активный на данном шаге элемент, ему также соответствует i-ый номер. Светло-серые клетки это те элементы, значения которых сравниваются с i-ым элементом. Все, что закрашено белым – не затрагиваемая на шаге часть последовательности.

Ниже на анимированном изображении показан еще один пример работы алгоритма сортировки вставками. Здесь, как и в предыдущем примере, последовательность сортируется по возрастанию.

Таким образом, получается, что на каждом этапе выполнения алгоритма сортируется некоторая часть массива, размер которой с шагом увеличивается, и в конце сортируется весь массив целиком.

Ссылка на основную публикацию
Сколько рублей получают ютуберы
Видеохостинг YouTube — не только развлекательная площадка, но и хороший источник дохода. Тысячи пользователей выкладывают ролики, пытаясь привлечь внимание аудитории....
Самый дорогой самсунг 2018
Samsung / Самсунг - южнокорейская компания, ведущий производитель смартфонов в мире. В первом квартале 2018 года доля Самсунг на мировом...
Самый лучший smart tv
Ежегодные обновления телевизионных технологий делают телевизоры уже больше, чем обычным экраном для демонстрации каналов. Растет популярность функции Smart TV, которая...
Сколько света мотает компьютер
Выбирая комплектующие для персонального компьютера (ПК) обычно обращают внимание на производительность и объем памяти, порой забывая о том, сколько же...
Adblock detector