Тема множества и операции над ними

Тема множества и операции над ними

Понятие множества и элемента множества.

Способы задания множества.

Отношения между множествами. Подмножества.

Изображение отношений между множествами при помощи кругов Эйлера.

Основная литература 7, 10, 11, 16, 23, 33, 34;

Дополнительная литература 2, 31, 82, 87, 92

Введение

Успешное обучение математике младших школьников требует от учителя не только мастерства, но и глубокого понимания сути математических понятий и факторов. Дело не только в том, что в начальных классах закладываются основы таких важнейших понятий, как «число» и «величина», происходит ознакомление с элементами буквенной символики и геометрии, развиваются логические умения, но и в том, что многие математические понятия младшие школьники используют без строгих определений, а во многих случаях и неявно. Все это предъявляет особые требования к математической подготовке учителя начальных классов. Он должен владеть понятиями натурального числа и величины, знать различные определения арифметических действий над числами, их свойства, уметь выполнять и объяснять устные и письменные вычисления, обосновывать выбор действия и устанавливать вид зависимости между величинами при решении текстовых задач. Учителю необходимо и умение использовать уроки математики для воспитания учащихся, в частности для формирования у них основ научного мировоззрения.

Математика, как и другие науки изучает окружающий нас мир, природные и общественные явления, но изучает лишь их особые стороны. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие их свойства: цвет, массу, твердость. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят: «Геометрическая фигура».

Результатом абстрагирования являются и такие важнейшие математические понятия, как «число» и «величина».

Вообще, любые математические объекты это результат выделения из предметов и явлений окружающего мира количественных и пространственных свойств и отношений и абстрагирования их от всех других свойств. Следовательно, математические объекты реально не существуют, нет в окружающем нас мире геометрических фигур, чисел и т.д. Все они созданы человеческим умом в процессе исторического развития общества и существуют лишь в мышлении человека.

Более того, при образовании математических объектов происходит не только абстрагирование от многих свойств предметов, но и приписывание им таких свойств, которыми никакие реальные предметы не обладают. Например, свойство неограниченной протяженности в обоих направлениях – прямой не обладает ни какой реальный предмет.

Эта лекция будет посвящена одному из таких математических объектов — понятию множества.

1. Понятие множества и элемента множества

Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.

Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный мир и растительный мир данной области, классифицирует все особи по видам, виды по родам. Каждый вид является некоторой совокупность живых существ, рассматриваемой как единое целое.

Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845–1918), «множество есть многое, мыслимое нами как целое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такового определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве чисел от 1 до 10, натуральных числах, множестве треугольников и квадратов на плоскости.

Понятие множества является одним из основных понятий математики и поэтому не определяется через другие. Его можно пояснить на примерах. Так, можно говорить о множестве учащихся некоторого класса, о множестве гласных букв русского алфавита, о множестве натуральных чисел.

Математический смысл слова «множество» отличается от того, как оно используется в обычной речи, где его связывают с большим количеством предметов. В математике этого не требуется. Здесь рассматривают множество, состоящее из одного объекта, и множество, не содержащее ни одного объекта.

В основном множества обозначают буквами латинского алфавита: A, B, C, …, Z, L.

Определение. Множество, не содержащее ни одного объекта, называют пустым и обозначают знаком .

Определение. Объекты, из которых образовано множество, называют его элементами.

Элементы множества принято обозначать строчными буквами латинского алфавита: a, b, c, …, z.

В математике и других науках нередко приходится выяснять, принадлежит какой-либо объект рассматриваемому множеству или не принадлежит. Например, мы говорим, что число 5 натуральное. Другими словами, число 5 принадлежит множеству натуральных чисел. Или, например, число 0,45 не является натуральным числом. Это означает, что число 0,45 не принадлежит множеству натуральных чисел.

Предложение вида “ Объект а принадлежит множеству А” можно записать, используя символы: аА. Прочитать его можно по-разному:

Объект а принадлежит множеству А.

Объект а – элемент множества А.

Множество А содержит элемент а.

Предложение “ Объект а не принадлежит множеству А” можно записать так: а  А. Его читают:

Читайте также:  Как настроить телефон в режим модема

Объект а не принадлежит множеству А.

Объект а не является элементом множества А.

Множество А не содержит элемента а.

Пусть А – множество однозначных чисел. Тогда предложение “7А” можно прочитать: “Число 7 однозначное”, а запись “ 14 А” означает: “Число 14 не является однозначным”.

Множества бывают конечными и бесконечными. Так, множество дней недели конечно, а множество точек прямой бесконечно. Бесконечными множествами являются и такие множества, как множество натуральных чисел (N), множество целых чисел (Z), множество рациональных чисел (Q), множество действительных чисел (R).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ТАВРИЧЕСКОЕ ПРДСТАВИТЕЛЬСТВО ОТКРЫТОГО МЕЖДУНАРОДНОГО УНИВЕРСИТЕТА РАЗВИТИЯ ЧЕЛОВЕКА (УКРАИНА)

«Математические основы информационной деятельности»

«Множества и операции над ними»

студентки 2 курса

и информационной деятельности

Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Если есть такая совокупность, разумеется, как единое целое, говорят, что имеют дело с множеством.

Приведенное определение не может рассматриваться как математически строгое, поскольку понятие множества является исходным, на основе него строятся остальные понятия математики. Тем не менее, из при веденного определения ясно, как можно говорить с множестве, например, действительных чисел или множестве плоских фигур.

Если множество состоит из конечного числа элементов, оно называется конечным. Остальные множества называются бесконечными. Для множества используются следующие обозначения:

Приведенное обозначение записано для множества А, состоящего из элементов а, Ь, с, d.

Конечные множества можно задать перечнем их элементов, бесконечные — нельзя. Обычно бесконечное множество задают, указывая на свойства, которым обладают все элементы данного множества, при этом подчеркивают, что таким свойством не обладают никакие элементы, не входящие в это множество. Такое свойство называется характеристическим для рассматриваемого множества.

Множество, в котором не содержится ни одного элемента, называется пустым. Обозначается оно знаком Æ.

Множества, состоящие из одних и тех же элементов, называют совпадающими. Например, совпадают два конечных множества, которые отличаются друг от друга порядком их элементов. Если элемент а принадлежит множеству А, то пишут:

В противном случае пишут:

Если одно множество является частью другого множества, говорят, что первое множество является подмножеством второго. Если первое множество обозначить А, а второе В, то обозначение такое:

Для любого множества А справедливы высказывания: множество А является подмножеством самого себя. Пустое множество является подмножеством любого множества.

В качестве примера можно привести высказывание о том, что множество всех ромбов является подмножеством множества параллелограммов.

Над множествами определяют операции, во многом сходные с арифметическими. Рассмотрим понятие таких операций только над двумя множествами А и В, которые являются разнообразными подмножествами одного и того же множества U. Последнее назовем универсальным множеством. Операции над множествами удобно интерпретировать геометрически с помощью диаграмм Эйлера-Венна (рис. 1 — 4).

Определение 1. Пересечением множеств А и В называют их общую часть С. Другими словами, пересечение множеств А и В образуют элементы, принадлежащие равно как А, так и В

Такое множество обозначают:

Определение 2. Объединением множеств А и В, называют множество С, составленное из элементов, принадлежащих хотя бы одному из этих множеств

Определение 3. Разностью множеств А и В называют множество

составленное из элементов, принадлежащих множеству В, но не принадлежащих множеству А

Разность U A называется дополнением множества А до универсального множества U и обозначается:= U A

Геометрическая интерпретация множества дана на следующем рисунке:

Если применять операции объединения и пересечения- к подмножествам некоторого множества D, то снова получатся подмножества того же множества D.

Операции объединения и пересечения обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности. Пересечение дистрибутивно относительно объединения, то есть для любых множеств А, В и С верно соотношение:

В то же время операции над множествами имеют ряд свойств, у которых нет аналогов в операциях над числами. Так, для любого множества А верны равен ства:

А Ç А = А, а также А и А = А.

С помощью свойств операции над множествами можно преобразовывать выражения, содержащие множества, подобно тому, как с помощью свойств операций над числами преобразовывают выражения в алгебре. Подобные действия над множествами и изучает булева алгебра, которая названа по имени английского исследователя Дж. Буля (1815 — 1864). Какими характеристиками можно описывать множества? Основной характеристикой конечного множества Является число его элементов.

Рассмотрим два множества А и В. Если в этих множествах находится одинаковое количество элементов, то из этих элементов можно составить пары таим образом, чтобы каждый элемент из множества , как и элемент из множества. В входил в одну и только в одну пару. Таким образом, между элементами множеств. А и В устанавливается так называемое взаимно однозначное соответствие. Считается истинным обратное утверждение: если между двумя конечными множествами А и В можно установить взаимно однозначное соответствие, то такие множества содержат равное количество элементов. Было предложено аналогичным образом сравнивать между собой бесконечные множества. Если между бесконечными множествами можно установить взаимно однозначное соответствие, значит, эти множества имеют одинаковую мощность. Один из создателей теории множеств немецкий математик Георг Кантор (1845 — 1918) сравнивал при помощи такого метода множества, составленные из чисел натуральных и чисел рациональных. Он показал, что между такими множествами существует взаимно однозначное соответствие, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств утверждение «часть меньше целого» теряет свою силу. Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными.

Таким образом, множество рациональных чисел счетно.

Есть несчетные множества. В качестве примера можно рассмотреть множество всех действительных чисел (это то же самое, что множество точек на прямой линии). Поскольку прямая непрерывна или континуальна, такую несчетную мощность называют мощностью континуума. Мощностью континуума обладает множество точек, например, прямоугольника, призмы, плоскости, всего пространства. Математики всего мира в течение долгих лет рассматривали проблему — существуют ли множества, мощность которых является промежуточной между счетной и мощностью континуума.

В 60-х годах нашего столетия американский математик П. Коэн и чешский математик П. Вопенко независимо друг от друга доказали, что как существование такого множества, так и его отсутствие не противоречат остальным аксиомам теории множеств.

Современная математическая наука вводит понятие дискретное множество и само понятие множества звучит так: под множеством понимается набор, совокупность, собрание каких-либо объектов (которые называются элементами множества).

Множество, все элементы которого изолированы друг от друга, называется дискретным. Для измерения степени изолированности элементов данного множества вводится понятие расстояния между элементами. Таким расстоянием для чисел может быть, например модуль разности между ними; для точек на плоскости — геометрическое расстояние; для двоичных наборов (чисел, кодов) одинаковой длины — число разрядов, в которых они различаются (например, расстояние между наборами 10110 и 11101). Дискретное множество определяется как множество объектов, расстояние между коне меньше некоторой наперед заданной величины e.

Конечное множество всегда дискретно (в качестве e берется минимальное из расстояний между элементами этого множества). Дискретно любое множество целых чисел (для них e = 1) и любое множество дробей, имеющих общий знаменатель m (для которых e=1/m ). Всякое дискретное множество счетно, т. е. его элементы можно пронумеровать целыми числами.

Однако не всякое счетное множество дискретно, например, счетное множество не дискретно, так как с ростом nрасстояние между соседними элементами стремится к нулю. Если задано дискретное множество точек прямой с минимальным расстоянием e любой отрезок длины l может содержать не более l/e +1 точек этого множества.

Понятие дискретного множества и связанные с понятия дискретного сигнала и дискретного времени чрезвычайно важны для информатики, как они лежат в основе разделения всех устройств и систем обработки информации на два основных класса — дискретные (цифровые) и непрерывные (аналоговые) устройства и системы.

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно — цифрами, каждая из которых четко отличает друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно — положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

Вообще любое представление информации с помощью конечного множества символов (букв, цифр, знаков препинания, математических знаков) дискретно; графическое представление (рисунок, чертеж) непрерывно.

Типичный пример дискретного устройства — ЭВМ, состояние памяти которой представляется последовательностью двоичных цифр — нулей и единиц, все операции в ней производятся с дискретными представлениями информации. Типичные примеры аналоговых устройств — измерительные приборы, представляющие информацию положением стрелки (вольтметр, спидометр), непрерывной кривой, выдаваемой на экран (осциллограф)или на бумагу (кардиограф) и т. д.

Переход от аналоговых представлений информации к цифровым (например, ввод результатов измерений ЭВМ) и обратно в технике осуществляется специальными устройствами: аналого-цифровыми и цифро-аналоговыми преобразователями.

Список использованных источников

1. Информатика/под общ. ред. Поспелова Д.А., М: Педагогика-пресс, 1994;

2. Математика и программирование (универсальная энциклопедия)/под ред. А.А. Щуплецова, — Мн: ТОО»Харвест», 1996;

3. Окно в мир информатики/под ред. Коляды М.Г., Днепропетровск: Сталкер, 1997.

Законы пересечения и объединения множеств.

Вычитание множеств. Дополнение одного множества до другого.

Понятие разбиения множества на классы.

Декартово произведение множеств.

Основная литература 7, 10, 11, 16, 23, 33, 34;

Дополнительная литература 82, 87, 92

1. Пересечение множеств

Из элементов двух и более множеств можно образовать новые множества. Считают, что эти новые множества являются результатомопераций над множествами.

Пусть даны два множества: А = 2, 4, 6, 8  и В = 5, 6, 7, 8, 9.

Образуем множество С, в которое включим общие элементы множеств А и В: С = 6, 8 . Так, полученное множество С называют пересечением множеств А и В.

Определение. Пересечением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А и множеству В.

Пересечение множеств А и В обозначают А  В. Тогда определение можно представить в символической записи:

Если изображать множества А и В при помощи кругов Эйлера, то пересечение данных множеств изобразится заштрихованной частью.

В том случае, когда множества А и В не имеют общих элементов, говорят, что их пересечение пусто и пишут: А  В = .

Замечание. Операция, при помощи которой находят пересечение множеств, называется также пересечением

Нахождение пересечения множеств в конкретных случаях

Если элементы множеств А и В перечислены, то, чтобы найти АВ, достаточно перечислить элементы, которые принадлежат А и В, т.е. их общие элементы.

Если множества заданы при помощи характеристических свойств элементов, то характеристическое свойство множества А  В составляется из характеристических свойств пересекаемых множеств с помощью союза «и».

Найдем пересечение множества А – четных натуральных чисел и множества В – двузначных натуральных чисел.

Характеристическое свойство элементов множества А – «быть четным натуральным числом», характеристическое свойство элементов множества В – «быть двузначным натуральным числом». Тогда, согласно определению, элементы пересечения данных множеств должны обладать свойством «быть четным и двузначным натуральным числом». Таким образом, множество А  В состоит из четных двузначных чисел (союз «и» в данном случае можно опустить). Полученное множество не пусто. Например, 24  АВ, поскольку число 24 четное и двузначное.

Найти пересечение множества А – четных натуральных чисел и множества В – натуральных чисел, кратных 4. Данные множества А и В бесконечные, и множество В – подмножество множества А. Поэтому элементами, принадлежащими множеству А и множеству В, будут элементы множества В. Следовательно, А  В = В.

2. Объединение множеств

Для того, чтобы объяснить школьнику, что 2 + 3 = 5, учитель берет 2 красных кружка и 3 синих. Просит перечислить эти кружки, затем предлагает к красным кружкам придвинуть синие (т.е. объединить эти две совокупности, два множества) и пересчитать все кружки совокупности. Устанавливается, что их 5, т.е. 2 +3 = 5. Таким образом, сложение чисел опирается на операцию объединения двух множеств.

В рассмотренном примере объединялись множества, не имеющие общих элементов. В математике приходится выполнять объединение и пересекающихся множеств.

Определение. Объединением множеств А и В называется множество, содержащее такие элементы, которые принадлежат множеству А или множеству В.

Объединение множеств А и В обозначают   . В символической записи: х      х  или х  .

Если изобразить пересекающиеся множества при помощи кругов Эйлера, то их объединение изобразится заштрихованной областью (рис. 1). Если множества А и В не пересекаются, то их объединение изображают так (рис. 2).

Операция, при помощи которой находят объединение множеств, называют также объединением.

Нахождение объединения в конкретных случаях:

Если все элементы множеств А и В перечислены, то, чтобы найти , достаточно перечислить элементы, принадлежащие А или В, т.е. хотя одному из множеств.

Так, если А = 2, 4, 6, 8, В = 5, 6, 7, 8, 9, то А  В = 2, 4, 5, 6, 7, 8, 9.

Если множества заданы при помощи характеристических свойств элементов, то характеристическое свойство множества А В составляется из характеристических свойств множеств А и В с помощью союза «или».

Найти объединение множества А четных чисел и множества В двузначных чисел. Так как свойство элементов множества А – «быть четным числом», а свойство элементов В – «быть двузначным числом», то в объединение данных множеств войдут числа, характеристическое свойство которых — «быть четным или двузначным числом».

Например, в А  В есть числа: 8, поскольку оно четное; 17, поскольку оно двузначное; 36, поскольку оно четное и двузначное.

Найти объединение множеств А – четных натуральных чисел и множества В – натуральных чисел, кратных 4.

Ранее было установлено, что В  А. Поэтому элементами, принадлежащими множеству А  , будут элементы множества А.

Название: Множества и операции над ними
Раздел: Рефераты по математике
Тип: реферат Добавлен 19:09:37 28 декабря 2009 Похожие работы
Просмотров: 1035 Комментариев: 12 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно Скачать
Ссылка на основную публикацию
Телефонный шлюз что это
VoIP-шлюз — это межсетевой шлюз, предназначенный для перевода трафика между сетями различных типов. VoIP-шлюзы можно разделить на многоканальные и одноканальные:...
Сравнить технические характеристики rx330 и rx350
Линейка популярных люксовых SUV Lexus RX пополнилась новой модификацией – RX 350. Теперь покупателем RX быть еще приятнее – ведь...
Сравнить процессоры кирин и снапдрагон
Snapdragon 636 vs. Kirin 960: кто лучше? Результаты тестов и сравнительных таблиц, описанных в этой статье, помогут определить, какой из...
Телефонная клавиатура на компьютере
Виртуальная клавиатура выручит Вас, когда выйдет из строя основное физическое устройство ввода, полностью или частично ( поломается несколько клавиш )....
Adblock detector