Угол между стороной и плоскостью

Угол между стороной и плоскостью

Нахождение угла между прямой и плоскостью.

Давайте повторим определение угла между прямой и плоскостью.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.

Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.

Построим угол между прямой a и плоскостью γ:

  1. Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
  2. Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b — проекция прямой a на плоскость γ;
  3. Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) — угол между прямыми а и b; ∠(a;γ) — угол между прямой а и плоскостью γ.

Для решения задач с помощью метода координат нам необходимо вспомнить следующее:

  1. Направляющим вектором прямойa называется ненулевой вектор , который лежит либо на прямой a, либо на прямой , параллельной a;
  2. Вектор нормали – это ненулевой вектор , перпендикулярный плоскости γ. Прямая s, на которой лежит вектор нормали, перпендикулярна плоскости γ;

3. Если известны координаты направляющего вектора < a1; b1; c1> и вектора нормали
, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.

Нам известна формула нахождения угла между прямыми:

; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a)=cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:

4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.

Любая плоскость в прямоугольной системе координат может быть задана уравнением

где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. .

Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:

  1. Делаем рисунок, на котором отмечаем прямую и плоскость;
  2. Вводим прямоугольную систему координат ;
  3. Находим координаты направляющего вектора по координатам его начала и конца ;
  4. Находим координаты вектора нормали к плоскости;
  5. Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
  6. Находим значение самого угла.
Читайте также:  Как подключиться к сетевому хранилищу

Рассмотрим задачу:
1. В кубе ABCDA1B1C1D1 найдите тангенс угла между прямой AC1 и плоскостью BDD1 .
Решение:


1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС1. Для этого сначала определим координаты точек А и С1:
А(0; 1; 0);
С1(1; 0; 1).
<1; -1; 1>.
3. Найдем координаты вектора нормали к плоскости BB1D1. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D1(0; 0; 1);
В(1; 1; 0);
Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:
D: a⋅0+b⋅0+c⋅0+d=0;
D1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.
Получили систему из трех уравнений:


Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD1 имеет координаты:
<1;-1; 0>.
4. Найдем синус между прямой АС1 и плоскостью BDD1:

5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС1 и плоскостью BDD1:

6. Найдем тангенс угла между прямой АС1 и плоскостью BDD1:

;

.

Ответ: .

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.

1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:


3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:

Как получили координаты точки S ?

Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О — проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.

Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)

Треугольник SOB — прямоугольный, следовательно, по теореме Пифагора:


Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:

Получили систему из трех уравнений:

Подставим в уравнение:

Т.о., вектор нормали к плоскости SBD имеет координаты:

.
4. Найдем синус между прямой BD и плоскостью SBD:

Читайте также:  Визуальные закладки яндекс для оперы

Ответ: .

Автор: Аникина Марина

Комментарии к этой заметке:

Добавить Ваш комментарий

Подпишитесь на рассылку и получайте ссылки на свежие уроки, статьи и новости

Хотите внести свою лепту в его развитие!? Тогда Вам сюда!

Формула вычисления угла между прямой и плоскостью

Если в пространстве заданы направляющий вектор прямой L

и уравнение плоскости

A x + B y + C z + D = 0,

то угол между этой прямой и плоскостью можно найти используя формулу

sin φ = | A · l + B · m + C · n |
√ A 2 + B 2 + C 2 · √ l 2 + m 2 + n 2

Вывод формулы для вычисления угла между прямой и плоскостью

Из уравнения прямой можно найти направляющий вектор прямой

Из уравнения плоскости вектор нормали плоскости имеет вид

Из формул скалярного произведения векторов найдем косинус угла между нормалью к плоскости и направляющим вектором прямой

cos ψ = | q · s |
| s | · | q |

Так как φ = 90° — ψ , то синус угла между прямой и плоскостью sin φ = cos ψ .

Расписав скалярное произведение векторов и модуль векторов через их координаты, получим формулу для вычисления угла между прямой и плоскостью.

Пример вычисления угла между прямой и плоскостью

Найти угол между прямой

x — 4 = y + 2 = — z — 6
2 6 3

и плоскостью x — 2 y + 3 z + 4 = 0.

Из уравнения прямой найдем направляющий вектор прямой

Из уравнения плоскости найдем вектор нормали плоскости

Воспользовавшись формулой, найдем угол между прямой и плоскостью

sin φ = | 2 · 1 + 6 · (-2) + (-3) · 3 | =
√ 2 2 + 6 2 + (-3) 2 · √ 1 2 + (-2) 2 + 3 2

= | 2 — 12 — 9 | √ 4 + 36 + 9 · √ 1 + 4 + 9 = |-19| √ 49 · √ 14 = 19 7√ 14

Ответ: sin φ = 19 7√ 14 .

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Угол между прямой и плоскостью – это.

. угол между прямой и её проекцией на эту плоскость

Читайте также:  Курсор мыши в левом верхнем углу


Вот, смотри: прямая плоскость . Как определить угол между ними? Оказывается (в соответствии с определением, которое мы только что дали) нужно опустить перпендикуляр ( ) из любой точки прямой на плоскость .

А потом провести прямую через точки и . Эта прямая ( ) называется проекцией прямой на плоскость . Так вот, угол между прямой и плоскостью (по определению !) равен углу ( ) между и .

Угол между прямой и плоскостью в задачах.

Как найти угол между прямой и плоскостью в задачах?

Как и в других задачах на нахождение углов и расстояний в стереометрии, есть два метода: геометрический и алгебраический.

Геометрический метод.

При геометрическом методе нужно найти какую-нибудь удобную точку на прямой, опустить перпендикуляр на плоскость, выяснить, что из себя представляет проекция, а потом решать планиметрическую задачу по поиску угла ( ) в треугольнике (зачастую прямоугольном).

Самый сложный момент – определить, куда опуститься перпендикуляр и какая же прямая является проекцией.

Алгебраический метод.

При алгебраическом методе вводится система координат, определяются координаты двух точек на прямой и уравнение плоскости, а затем применяется формула вычисления угла между прямой и плоскостью.

Здесь ( ), ( )- координаты двух точек на прямой, , , –координаты в уравнении плоскости: .

Самый сложный момент – твёрдо запомнить формулу и хорошо понимать, откуда взять все буквы для неё.

Теперь мы разберём одну задачу, где нужно найти угол между прямой и плоскостью, двумя разными способами: геометрическим и алгебраическим.

Задача по поиску угла между прямой и плоскостью:

В правильной шестиугольной пирамиде точка — середина ребра. Найти угол между прямой и плоскостью основания, если .

Решение геометрическим методом:

Поскольку в правильной пирамиде высота опускается в центр основания , то — это проекция , а точка проецируется в точку — середину отрезка . И теперь — это проекция , а искомый угол между прямой и плоскостью основания – это .

Ищем этот угол. Пусть стороны основания равны какому – то , тогда боковые рёбра – . Заметь, что – прямоугольный и в этом треугольнике нам нужно найти острый угол. Проще всего найти тангенс этого угла.

Ссылка на основную публикацию
Телефонный шлюз что это
VoIP-шлюз — это межсетевой шлюз, предназначенный для перевода трафика между сетями различных типов. VoIP-шлюзы можно разделить на многоканальные и одноканальные:...
Сравнить технические характеристики rx330 и rx350
Линейка популярных люксовых SUV Lexus RX пополнилась новой модификацией – RX 350. Теперь покупателем RX быть еще приятнее – ведь...
Сравнить процессоры кирин и снапдрагон
Snapdragon 636 vs. Kirin 960: кто лучше? Результаты тестов и сравнительных таблиц, описанных в этой статье, помогут определить, какой из...
Телефонная клавиатура на компьютере
Виртуальная клавиатура выручит Вас, когда выйдет из строя основное физическое устройство ввода, полностью или частично ( поломается несколько клавиш )....
Adblock detector