Верхнее или нижнее расположение блока питания

Верхнее или нижнее расположение блока питания

Правильное охлаждение для нестандартных корпусов ПК

С течением времени высокотехнологичные компьютерные компоненты становятся все мощнее, но корпус компьютера почему-то продолжает многими пользователями восприниматься как невзрачная коробка для важных комплектующих. Так ли это на самом деле?

У абсолютного большинства производителей корпусов в основе практически всех моделей лежит воздушное охлаждение, при этом корпуса оснащаются персональными интересными решениями, например, воздухозаборными трубами, дополнительными кулерами или своеобразным расположением комплектующих в системном блоке. Ранее нами были рассмотрены основные тенденции по охлаждению стандартных корпусов персонального компьютера, в этой статье речь будет идти о необычных решениях, свойственных именно нестандартным вариантам корпусов ПК.

Расположение блока питания в нижней части корпуса

В результате проведенных тестов были выявлены преимущества и недостатки подобного расположения. Полученные данные представим в форме влияния охлаждения на конкретные элементы персонального компьютера.

Данные с датчика системной памяти

При расположении блока питания снизу, системная плата устанавливается в верхней части корпуса. Собираясь вверху, нагретый воздух в отсутствии активной циркуляции больше нагревает верхнюю часть платы. При ускорении вращения корпусных кулеров температура платы системной памяти снижается. В варианте расположения блока питания снизу это одно из наиболее слабых мест.

Данные с датчика радиатора процессора

При расположении блока питания вверху он работает вместе с корпусным вентилятором, обеспечивая лучшее охлаждение. При установке блока питания в нижнюю часть корпуса выявляется ухудшение на 3-4 градуса. В качестве решения этого понижения необходимо отметить, что в корпусах, где БП расположен внизу, часто предусмотрено дополнительное место для кулера, или уже установлены два корпусных кулера на выдув. Один из них располагается на передней стенке корпуса, а другой, где в классических вариантах располагается блок питания.

Данные с датчика из блока питания о температуре воздушного потока

Блок питания располагают внизу, как правило, из соображения, чтобы он не нагревался от видеокарты и процессора. По проведенным тестам оказалось, что температура практическим не меняется в зависимости от расположения, разница между вариантами «сверху» и «внизу» всего несколько градусов. На первый взгляд может показаться, что устанавливать блок питания снизу нецелесообразно, но это не совсем так.

Когда блок питания с регулируемыми оборотами вентилятора был расположен в классическом варианте (сверху), сила воздушного потока из него равнялась приблизительно 1500 об/мин. При перемещении БП вниз корпуса наблюдалось лишь едва ощутимое дуновение. В первые минуты кулер на нем почти не вращался, и далее в процессе «разгона» системного блока, он был несравнимо меньше варианта расположения БП сверху. Этому есть вполне логичное объяснение. Современные блоки питания способны регулировать скорость вращения установленного вентилятора, ориентируясь на температуру в контрольной точке (обычно на радиаторе выпрямительных диодов). Идея проста: при увеличении нагрузки на блок питания энергичнее двигается вентилятор, учитывая нагревающиеся диоды.

В случаях, когда нагрузка на БП не очень большая (например, 300 Вт на блок в 500 Вт), радиатор может нагреваться недостаточно сильно, что приводит к медленному вращению вентилятора. В общем представлении есть 2 типа регуляторов: первый тип останавливает вентилятор, когда температура падает ниже пороговой, а второй – просто снижает скорость вращения до минимальных значений, продолжая работать. Так вот для нижнего размещения БП подходит именно второй тип.

Один из наиболее важных моментов: если кулер в блоке питания слабо вращается, то почему воздух из него так сильно нагревается? Вообще такой воздух, поднимаясь вверх, должен удаляться верхним корпусным вентилятором, но все дело в том, что высокая скорость подачи воздуха в системный блок не дает горячему воздуху спокойно подняться наверх. В результате перемешивания вся область в районе видеокарты охвачена примерно равной температурой. Затем горячий воздух идет в блок питания, откуда попадает наружу. В итоге: БП расположили внизу, но температура, исходящая из него, по-прежнему осталась высокой.

В ситуации, когда блок питания берет воздух для охлаждения из корпуса, его температура на порядок выше, чем в вариантах использования внешнего притока. На общем охлаждении и его производительности это сказывается, хотя и не так значительно. Правильным решением будет обычная перфорация в дне корпуса ПК.

Резюме и выводы относительно охлаждения при нестандартном расположении блока питания в корпусе компьютера

С позиций системы охлаждения установка блока питания снизу может сделать ее значительно тише и холоднее. Если Вы приняли решение поставить БП вниз, придется озаботиться проблемой усиления выдува. Обычно в нестандартных системных блоках подобного вида предусматривают расположение 2 вытяжных кулеров сверху в корпусе. Если в дне корпуса много вентиляционных дырок, то это только на пользу, поскольку у вариантов подобной перфорации не было выявлено недостатков.

Еще несколько факторов, которые могут способствовать размещению блока питания в нижней части корпуса. Современные процессорные вентиляторы очень больших размеров, а расположение БП снизу дает больше простора для фантазии. Кроме того, при установке БП снизу сопутствующие кабели пускаются по дну, не захламляя корпус, создавая приятное эстетическое впечатление.

Основные выводы: нижнее расположение БП снижает его температуру, что позитивно влияет на уменьшение шума и долговечность самого устройства. Недостатком можно назвать возрастающую нагрузку на вытяжной кулер, но данная проблема решается путем установки второго вентилятора либо перфорацией дна корпуса.

Другие способы установки вентиляторов при нижнем блоке питания:

Нестандартное расположение вентиляционных отверстий

Классически в стандартных корпусах считается правильным охлаждение сквозным воздушным потоком, который направлен от передней стенки корпуса к задней. Довольно продолжительное время многие компании-производители, например Intel, рекомендуют для охлаждения дополнительно использовать левую стенку для непосредственного подвода воздуха из отверстия к процессорному кулеру.

Теоретически внутри корпуса в любом месте можно устанавливать дополнительные кулеры для улучшения циркуляции воздуха. Очень важно помнить главное правило: на левой боковой и передней стенках воздух нагнетается в корпус, а на задней стенке – горячий воздух должен выбрасываться наружу. При использовании нестандартного расположения охлаждения на левой стенке важно контролировать, чтобы горячий воздух от задней стенки не попадал по прямой траектории в воздухозабор левой стенки компьютера. При этом вид устанавливаемых вентиляторов зависит от соответствующих разъемов в стенках Вашего корпуса и наличия денежных средств, поскольку рынок представлен широким разнообразием моделей, как по производительности, так и по размеру кулеров.

Что же касается решеток для воздуха, которые можно часто наблюдать в бюджетных вариантах корпусов в форме отверстий в металлической пластине: эффективность такого вида воздухозабора значительно меньше, чем вентилятора. Монтирование на это место проволочной решетки позволит значительно облегчить работу кулера и уменьшить шум от воздушных потоков.

Также данное вентиляционное отверстие можно модернизировать посредством создания пылевого фильтра из подручных средств, например, марлевого бинта или москитной сетки – все это позволит предотвратить проникновение пыли внутрь компьютера. Но очень важно при этом в будущем регулярно очищать эти фильтры, так как они очень быстро забиваются пылью. А забитый пылью фильтр сделает не только систему охлаждения неэффективной, но и ухудшит её.

Читайте также:  Magic cast для яндекс браузера

Ряд производителей компьютерных корпусов используют внутри своих моделей своеобразные перегородки для правильного движение воздуха внутри корпусов. Например, корпус может заполняться пенопластом с проделанными в нем воздуховодами: при таком варианте воздух, направляемый внутрь вентиляторами, двигается точно к горячим участкам системы комплектующих, а в конце нагретый воздух по кратчайшему маршруту выводится через заднюю стенку корпуса. Безусловно, данный процесс довольно сложен и далеко не универсален. Но желающие пользователи могут попробовать свои силы в имитации подобного метода, за счет которого эффективность всей системы охлаждения лишь возрастет.

Будем рады услышать Ваши комментарии к статье, где каждый сможет поделиться особенностями строения своей системы охлаждения или возникшими трудностями по ее эффективной настройке.

Идет время, компьютерные системы становятся мощнее, и только корпус системного блока практически не изменился – всё та же невзрачная металлическая коробка. Так ли все скучно в этой отрасли? Я не о смене цветовой гаммы или установке дополнительной иллюминации. Изменения есть, речь далее пойдет об одном технологическом новшестве. Спецификация ATX подразумевает установку блока питания рядом с той стороной печатной платы, где размещается процессор (и его радиатор). Но является ли это лучшим решением?

Качество работы компьютера зависит от надежности блока питания. А основная причина ухудшения его характеристик кроется в деградации свойств электролитических конденсаторов. Они и так работают на пределе мощности, да еще их подогревает горячий воздух из системного блока. Как известно из школьного курса химии, скорость химической реакции удваивается на каждые десять градусов. Для электролитических конденсаторов указывается температура в 105 градусов, но не задумывались, сколько времени они проработают при такой (или подобной) температуре? Цифра вас вовсе не обрадует.

реклама

Спецификация ATX по этому поводу говорит примерно следующее:

При вертикальном исполнении системного корпуса данная концепция означает установку блока питания (‘PSU with fan’ на картинке) над платой. Такая компоновка раньше была обычным явлением и только в последнее время появились альтернативные конструкции. Довольно близко к стандартному исполнению выполнен довольно известный системный корпус Ascot 6AR2:

реклама

Для проведения тестирования можно было бы взять два этих (или подобных им) системных блока и провести исследование … но при этом потеряется весь смысл – меняя корпус, нельзя учесть всех мелочей, влияющих на протекание воздушных потоков. Поэтому ни CM690, ни чего-либо аналогичного вы не увидите. Для обоих вариантов компоновки будет использован один и тот же корпус Ascot 6AR2, но с некоторыми доработками.

Топологии исполнения системных блоков с размещением блока питания вверху и внизу очень похожи – основной блок элементов просто смещается вниз или вверх. Если взять разные корпуса, то с корректностью тестирования можно сразу проститься, поэтому в экспериментах будет участвовать один и тот же системный блок, а тип исполнения будет меняться перемещением системной платы и ее сопутствующих элементов крепления.

Вторая проблема – при проведении тестирования не ожидается значительного изменения температур, для повышения точности будет использовано пять датчиков с фиксацией их на местах измерений.

Чтобы оценить эффективность разных топологий, в корпусе надо собрать типичную конфигурацию системного блока. Но вряд ли хорошей идеей будет установка дорогостоящих компонентов в ‘пиленный’ корпус. Что же, значит эмуляция, так даже лучше. ‘Компьютер из резисторов’ набирать совсем уж скучно, поэтому использовалась системная плата на наборе микросхем nForce4 с совсем уж смешным процессором Athlon 64 3000+ (Venice) и видеокартой S3 Virge/DX. Подобная комплектация потребляет совсем чуть, поэтому остальное добиралось с помощью одного канала блока нагрузок. Такой вариант хорош тем, что можно весьма произвольно эмулировать тепловыделение компонентов в системном блоке.

Да и блок питания лучше подобрать обычный, который можно встретить в компьютерах: с высоким КПД и без заоблачной цены. Достойных кандидатур много, ну пусть будет FSP550-80GLN , благо его характеристики обсуждались ранее . Измеренный КПД для канала 12 В и мощности нагрузки 200-300 Вт составлял 89-90 процентов.

  • Материнская плата: EPoX EP-9NPA+ (nForce4 Ultra);
  • Центральный процессор: AMD Athlon 64 3000+ (Venice) @ 2.5 ГГц 1.76 В;
  • Блок питания: FSP550-80GLN ;
  • Нагревательный элемент: один канал нагрузки 12 В для тестирования блоков питания.

Для начала хочется определиться с конфигурацией системного блока. Понятно, что будет применяться эмуляция, но она должна быть выполнена для действительно типичного случая. ‘Quad-SLI’ и ‘печатные машинки’ можно сразу отбросить — для них обычно используются специфические решения. Остается что-то вида Phenom x4 / Core i5 2500K с видеокартой AMD HD 6970 / NVIDIA GTX 570. С последним есть важный момент – некоторая часть видеокарт использует оригинальный дизайн системы охлаждения, без выноса нагретого воздуха из системного корпуса.

Однако не стоит переоценивать эффект от выноса тепла наружу в эталонных системах охлаждения – в видеокартах довольно много тепла рассеивается обратной стороной печатной платы. Что ж, даже у ‘типичной’ конфигурации получается довольно большой спектр номенклатуры, но вряд ли разумно проводить тестирование на всём её разнообразии – изменится лишь масштаб цифр, но не скажется на эффективности размещения блока питания внизу или вверху.

Мощность потребления современных процессоров порядка 50-150 Вт, видеокарт 150-230 Вт. При этом следует учесть, что самые производительные видеокарты (с большей мощностью потребления), как правило, удаляют значительную часть тепла за пределы корпуса, а нас интересует только тот нагрев, который происходит внутри системного блока. При некотором упрощении, положим тепловыделение процессора в 100 Вт и 150 Вт для видеокарты.

Пробный запуск тестового стенда показал, что Athlon 64 3000+ (Venice) на 1.76 В и 2.5 ГГц рассеивает около 50 Вт в тесте S&M. Это явно не дотягивает до требуемых 100 Вт, но большего от этого процессора не получить, и так было выставлено максимально возможное напряжение. Что же, нехватку в 50 Вт можно компенсировать за счет повышение тепловыделения дополнительного нагревательного элемента, что означает необходимость получения потребления на нем 200 Вт (150 Вт от видеокарты и дополнительные 50 Вт от процессора).

Это не совсем то, чего хотелось, но подобная перенастройка не скажется на результатах тестирования, ведь интерес представляет верх системного блока, именно там соберется тепло и от процессора, и от других элементов.

Читайте также:  Что такое ресемплирование в sony vegas

реклама

Давайте соберем все цифры в одном месте:

  • Мощность потребления процессора без нагрузки: примерно 8 Вт;
  • Мощность потребления процессора в программе S&M: 50 Вт;
  • Мощность потребления нагревательного элемента: 200 Вт;
  • Потребление системного блока от сети 220 В: 341 Вт;
  • Мощность нагрузки блока питания: 305 Вт;
  • Мощность потерь в блоке питания: 36 Вт.

Суммарное тепловыделение основных элементов (процессор + нагревательный элемент) составило 250 Вт, при этом полное — 305 Вт. Остальные (305-250=) 55 Вт расходуются на нужды системной платы (набор микросхем nForce4 и четыре модуля памяти), питание жесткого диска. Интересно, что потребление компьютера в номинальном режиме, без загрузки процессора Burn-программами, составляет всего лишь 74 Вт.

Методика исследования состоит в сравнении двух вариантов размещения блока питания при минимальном внесении изменений в другие элементы. Но это не означает, что будут сравниваться только два варианта. Наверно, стоит рассмотреть влияние скорости вращения вентиляторов и небольшое изменение воздушных потоков. Это означает, что будут рассматриваться три модификации на двух исполнениях корпуса.

1. Скорость вращения корпусных вентиляторов 1500 об/мин.
2. Скорость вращения снижена до 1000 об/мин.
3. То же, что и ‘2’, но с удалением заглушек неиспользуемых плат расширения.

Вариант ‘3’ интересен тем, что создает дополнительный приток ненагретого воздуха в системный блок. Подобный прием прост в реализации и довольно эффективен в снижении общей температуры в системном блоке. Для данного теста этот случай может оказаться чувствителен к месту размещения блока питания, ведь (при его расположении внизу) теплый воздух из него может проникать обратно в системный корпус через открытые отверстия плат расширения.

реклама

Пояснения * :

1. Набор микросхем nForce4.
2. Системная память.
3. Радиатор процессора.
4. Решетка блока питания.
5. Выход воздуха через верхний выдувной вентилятор.
6. Датчик расположен на материнской плате, левее верхнего разъема PCI.

реклама

Второй тест будет несколько иной направленности. Если при установке блока питания вверх вариантов просто не было, то нижнее расположение можно сделать по-разному. Во-первых, можно установить блок питания входным отверстием вентилятора вверх или вниз. При этом меняется источник охлаждения – либо слегка нагретый воздух из корпуса, либо наружный, через перфорацию внизу корпуса. Во-вторых, ряд корпусов оборудован перфорацией по всему дну, что (вроде бы) обеспечивает лучший теплообмен. Это тоже стоит проверить.

Итак, выходит четыре варианта. Наверно, не стоит удваивать количество измерений при скорости вращения корпусных вентиляторов равной и 1500, и 1000 оборотов в минуту. Ограничимся последним значением, чаще всего блок питания ставят вниз для уменьшения уровня шума, поэтому повышенная скорость корпусных вентиляторов не очень актуальна.

Отдельно хочется сказать о первом тестировании, когда блок питания находился внизу, но с нестандартным вариантом установки – забор воздуха из корпуса. Подобное будет неверно только для случая блоков питания с 120 мм вентилятором. Если же в БП есть перфорация по его корпусу, или установлен 80 мм вентилятор, то первый тест будет весьма корректен. Для иной компоновки блока питания и предусмотрен второй тест.

Датчики 1-5 измеряют разность между температурой измеряемых точек и воздуха вне системного блока. Датчик номер 6 показывает температуру печатной платы, он находится где-то в недрах материнской платы, предположительно около верхнего разъема PCI, и его показания особого смысла не несут.

Датчик Скорость вентиляторов, об/мин БП вверху, градусы БП внизу, градусы Разность, градусы
nForce4 1500 35.1 31.8 3.3
1000 38 37.8 0.2
1000 ** 37.9 36.9 1
Системная память 1500 22.4 24.2 -1.8
1000 25.2 30.5 -5.3
1000 ** 26.6 30.2 -3.6
Радиатор процессора 1500 22.3 25 -2.7
1000 27.9 31 -3.1
1000 ** 27.4 29.2 -1.8
Решетка БП 1500 13.2 12.8 0.4
1000 15.5 14.4 1.1
1000 ** 16 14.5 1.5
Вытяжной вентилятор 1500 11.1 13.5 -2.4
1000 14.8 19.7 -4.9
1000 ** 14.9 19 -4.1
Материнская плата * 1500 54 * 53 * 1
1000 57 * 57 *
1000 ** 51 * 56 * -5

* Все датчики, кроме этой позиции, показывают перегрев к температуре окружающего воздуха вне системного блока.
** Дополнительно сняты заглушки свободных плат расширения.

реклама

Нижнее расположение блока питания, меняется ориентация его входного отверстия вверх или вниз, и дополнительная перфорация внизу корпуса. Корпусные вентиляторы работали со скоростью вращения 1000 об/мин.

Ориентация входного отверстия БП Дополнительная перфорация низа корпуса Воздух из БП, градусов Воздух из корпуса, градусов
Отверстием вверх,
воздух из корпуса
нет 13.5 18.9
есть 10.1 16.8
Отверстием вниз,
воздух снаружи
нет 4.3 20
есть 3.6 17.7
нет * 8 * 19.5 *

* Закрыт приток воздуха к вентилятору БП (довольно глупый режим).

реклама

Он установлен на материнской плате и находится левее PCI разъемов, а потому отражает температуру в этой зоне. Пока заглушки установлены, его показания мало зависят от варианта установки блока питания. Если же их снять, то это обеспечит приток прохладного воздуха и температура снизится… но только для случая с блоком питания вверху. При его нижнем расположении, через открытые щели плат расширения в корпус будет проникать вовсе не прохладный воздух, что сразу отразилось на результате – 56 градусов вместо 51.

Впрочем, если сравнить изменение показаний этого датчика со всеми остальными, то станет понятна бесполезность использования программного мониторинга для получения адекватных результатов замеров. Ну, сами посудите – при удалении заглушек этот датчик показал уменьшение температуры на 6 градусов, а другие датчики зафиксировали изменения только на 0.5-1 градус.

Датчики 1-5 показывают разность температур с окружающей средой, отсюда такие ‘маленькие’ цифры. Если хотите абсолютных величин, то прибавьте ту температуру воздуха, что и у вас в комнате. Положим, это 27 градусов. Значит, показания датчика ‘16 градусов’ следует понимать как 16+27=43 градуса, а это уже воспринимается как ‘довольно тепло’.

Датчик номер 1, набор микросхем nForce4.

Его особенность в том, что прямо под ним находится эмулятор видеокарты, нагревательный элемент. Когда блок питания внизу, то он хоть и немного, но отбирает тепло от ‘видеокарты’ и несколько улучшает перемешивание воздушной массы в этой зоне. Довольно странно, что наибольший эффект получается при большей скорости вращения корпусных вентиляторов.

Датчик номер 2, системная память.

Для случая размещения блока питания внизу, это место показывало явное ухудшение охлаждения. Причин несколько.

Во-первых, при размещении блока питания внизу, сама системная плата ’поднимается’ к верху корпуса. Это еще ничего, но нагретый воздух собирается вверху, при отсутствии активного перемешивания верхняя часть системной платы оказывается более теплой. Полученные измерения подтверждают эту предпосылку – при увеличении скорости вращения корпусных вентиляторов температура системной памяти снижается.

Читайте также:  Дискпарт обнаружила ошибку ошибка в данных crc

Во-вторых, когда блок питания установлен вверху, то он немного захватывает зону системной памяти. Точнее не так, его вентилятор ближе к памяти, а потому он немного забирает нагретый воздух из тепловой зоны над памятью, что немного снижает ее температуру. Системная память выделяет мало тепла, но она совсем не обдувается, поэтому и такая чувствительность даже к малейшему обдуву (отбору теплого воздуха).

Датчик номер 3, радиатор процессора.

Тут все просто и никаких разночтений. Когда блок питания вверху, то он работает в паре с корпусным вентилятором, что обеспечивает лучшее охлаждение. При переносе блока питания вниз сразу получается ухудшение на 2-3 градуса. В качестве оправдания напомню, что в корпуса с расположением блока питания вниз, довольно часто предусмотрено место или уже установлены два корпусных вентилятора на выдув. Один на обычное место и еще один (дополнительный) туда, где в стандартном варианте находился бы блок питания.

Датчик номер 5 (четвертый пока пропустим), вытяжной корпусной вентилятор.

Чем меньше его обороты, тем выше температура выходного потока. Когда блок питания вверху, то он помогает корпусному вентилятору, особенно на низкой скорости вращения последнего.

реклама

Датчик номер 4, температура воздушного потока из блока питания.

Ну вот, дошли до самого интересного. Блок питания ставят вниз только из того соображения, чтобы не нагревать его теплом от видеокарты и процессора. Провели тест и оказалось, что от места расположения температура блока питания не меняется? Ну, сами посудите – из таблицы видно, что разница между обоими вариантами установки составляет 1-2 градуса. Смысла нет! … Не совсем. В цифрах ошибки нет, все дело в отсутствии еще одной характеристики. Увы, но пока я не могу измерить скорость вращения вентилятора в блоке питания. Надеюсь, пробел будет устранен, но пока придется поверить мне “на слово”.

Когда блок питания был установлен в штатном варианте, сверху, то сила потока воздуха из него примерно равнялась потоку из корпусного вентилятора на 1500 об/мин. При установке вниз из блока питания выходило едва ощутимое дуновение. Даже больше, в первые несколько минут вентилятор на нем почти не вращался. По мере разогрева системного блока поток из БП стал более ощутим, но все равно он был несоизмеримо меньше варианта установки сверху.

Этой ‘глупости’ есть вполне обычное объяснение. Дело в том, что современные блоки питания регулируют скорость вращения своего вентилятора в зависимости от температуры в контрольной точке, которая, обычно, располагается на радиаторе выпрямительных диодов. Суть идеи в том, что чем больше нагрузка на блок питания, тем больше нагреваются выпрямительные диоды и тем энергичнее крутится вентилятор.

Но если нагрузка не очень большая (300 Вт для блока питания ‘550 Вт’ – это немного), то радиатор выпрямительных диодов нагревается недостаточно сильно и вентилятор вращается медленно. Вообще-то, есть два типа регуляторов – одни останавливают вентилятор при температуре ниже пороговой, как тестовый блок питания ( FSP550-80GLN ), а есть и такие, которые просто снижают скорость вращения до минимума, но продолжают крутиться. Последний вариант больше подходит для размещения вниз.

реклама

Второй тест позволяет оценить чувствительность системы охлаждения к источнику охлаждающего воздуха блока питания и влияние дополнительного притока воздуха с низа корпуса, от перфорации в дне.

Когда блок питания для охлаждения берет воздух из корпуса, то его температура существенно больше, чем при использовании внешнего притока. На производительности общего охлаждения это сказывается, но как-то вяло. Здесь эффективнее оказывается простая перфорация в дне корпуса.

Последний вариант установки питания, во втором тесте, при своей глупости принес некоторую полезную информацию. В этом случае БП был установлен окном вентилятора вниз, но дно в корпусе системного блока осталось закрытым. Между блоком питания и дном остался небольшой промежуток, вот через эту щель и забирался воздух для охлаждения. Фактически, получился вариант установки типа ‘1’ с притоком воздуха из корпуса, но место забора ниже и теплая зона от ‘видеокарты’ (нагревательного элемента) дополнительно экранировалась корпусом самого блока питания.

В результате получилось что-то среднее между обоими вариантами ориентации блока питания, 8 градусов. Напомню, ‘нормальная’ установка окном вентилятора вверх или вниз давали 13.5 и 4.3 градуса соответственно. Довольно трудно придумать практическое применение такого решения. Разве что, при большой запыленности в помещении и обязательном применении фильтра на втяжном корпусном вентиляторе.

реклама

С точки зрения системы охлаждения все ясно – размещение блока питания снизу позволяет ‘сделать’ его холоднее и тише. Что до общего охлаждения, то при такой компоновке на корпусные вентиляторы возлагается полная нагрузка по удалению нагретого воздуха. Когда блок питания находился вверху, то он работал в паре с верхним корпусным вытяжным вентилятором и брал часть нагрузки на себя. Поставили блок питания вниз – придется усилить выдув. Обычно в системных блоках с нижним расположением БП предусматривают установку двух вытяжных вениляторов в верхней части корпуса. Что касается перфорации в дне, то у такого решения не обнаружено недостатков. Поэтому, если в корпусе всё дно из дырок, это только на пользу.

Есть еще один момент, который может склонить чашу весов к переносу блока питания вниз. Современные процессорные кулеры не просто большие, а очень большие. Понятно, что в маленьком объеме мощность четырех- или шестиядерного процессоров не рассеять, поэтому надо рассчитывать на наихудший вариант. Например, в моем личном компьютере на Core 2 Quad получилась такая компоновка:

Обратите внимание, радиатор находится рядом с заборным окном блока питания. Ну и как это будет работать, если потоки в радиаторе движутся а-бы-как? Замечено, что вентилятор начинает издавать повышенный шум, если препятствие находится прямо перед ним. Попробуйте как-нибудь взять его и поднести ладонь перед ним и за ним (по направлению потока воздуха). Если поднести руку ‘после’, то уровень шума практически не меняется, а ‘перед’? Увы. Это означает, что в моей компоновке я получил больший уровень шума ‘просто так’. А что делать, если варианты отсутствуют.

реклама

Итак, кратко – нижнее размещение блока питания уменьшает его температуру, что благотворно сказывается на уровне шума и долговечности самого БП. К недостаткам можно отнести немного возросшую нагрузку на вытяжной вентилятор, но эта проблема может решаться конструктивными элементами — установкой второго вытяжного вентилятора и/или перфорацией в дне корпуса.

Ссылка на основную публикацию
Блокировка pci в msconfig что это
Msconfig - утилита, предназначенная для выявления причин некорректной работы системы, программ, выбора варианта загрузки Windows, а также для диагностики системы....
Wpa2 personal или enterprise что лучше
Кратко объясним, что такое WEP, WPA и WPA2 и в чем разница между ними. Расшифровка: Wired Equivalent Privacy. Переводится как...
Wva матрица или ips
При выборе монитора или ноутбука часто встает вопрос о том, какую матрицу экрана выбрать: IPS, TN или VA. Также в...
Белые точки на мясе
Ослизнение мяса и субпродуктов — часто встречающийся порок, возникновение которого связано с действием слизеобразующих микроорганизмов. Ослизнение возникает при нарушении температурного...
Adblock detector